
28 STQE MAY/JUNE 2003 www.stqemagazine.com

Testing

I N F O T O G O
If you want to know
the basics of how to do
risk-based testing, see
James’s article “Risk-
Based Testing” in the
November/December
1999 issue of STQE mag-
azine (also available at
www.stickyminds.com).
■ Because risk analysis is

a social process, ideas
often overlap and con-
flict. To make sense of
these ideas, categorize
them by type and know
your frame of reference.

■ To combat the fear of
talking about risk,
reframe the topic of
conversation to choices.

■ Bad risk analysis is a
self-correcting problem.

RISK-BASED TESTING IS A SKILL.

It’s not easy to know the ways
that a product might fail, deter-
mine how important the fail-
ures would be if they occurred,
and then develop and execute tests to discover whether or not the product
would indeed fail in those ways. This process is even more difficult when prac-
ticed in the typical development environment, with its pressure of impending
deadlines, absence of complete information, and presence of differing opinions
about what could go wrong in the product. But it’s a skill worth learning. Pay-
ing attention to risk focuses testing on that which is most often the core mission
of testing: finding important problems fast.

Solutions
to

Four
Common
Problems

by
James Bach

Troubleshooting
Risk-Based Testing

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

www.stqemagazine.com MAY/JUNE 2003 STQE 29

In my consulting practice, I’ve no-
ticed certain common problems testers
and test managers experience when pur-
suing a risk-based approach. Let’s look
at four of these issues and see how to
overcome them.

PROBLEM #1:

“Everyone
thinks

risk-based
testing is

just a
management

thing.”
Often when I hear someone talk about
risk-based testing, they seem to be talk-
ing about only risk-based test manage-
ment—allocating resources to test activi-
ties according to particular product risks.
The principal concern of risk-based test
management is which test activities are
most useful, and how much of them we
should do. For instance, you may use risk
as the basis of a decision to have four
testers work on performance and scala-
bility testing of a Web site, while only
one does functional testing. That’s cool.
But what happens after the testers are
given their tasks? Isn’t there a value to
risk-based test design?

Solution #1: Use risk to drive
test design also.
When I use the term “risk-based testing,”
I mean both risk-based test management
and risk-based test design. Test design
picks up where management leaves off.
Risk-based test design is the process of
designing tests that reveal information
about particular product risks. The prin-
cipal concern of risk-based test design is
whether or not the product will indeed
fail in a way that we fear it might. The
outcome is a set of particular tests to de-
termine just that.

One way to approach this task is by
creating a risk catalog (also known as a
bug taxonomy). In its simplest form, this
is a list of the types of bugs that may oc-
cur in a product. I say “bug” pointedly,
in the sense of anything that threatens
the value of the product. That may in-
clude faults, failures, or threat condi-
tions. When I write a risk catalog, it’s an
outline of statements of the form “[some-

thing] may [go wrong].” If I have more
information, such as what causes the
problem or what impact the problem will
have if it occurs, I might also include that
information. I have created risk catalogs
where I took a whole page to describe
each risk. Generally speaking, though, I
prefer to keep the statements to a single
sentence or sentence fragment.

Once you have a risk catalog, you can
decide which items are worth testing.
Then for each item, design tests that seek
to answer these questions: Can this prob-
lem occur in my product? If so, how bad
a problem would it be?

PROBLEM #2:

“My risk
lists are

muddled.”
There are many ways to identify and an-
alyze risks. I like to talk about the rea-
soning processes of risk analysis and how
they help bring good ideas to light. But
what happens when you do this with
other people? Then it’s no longer just a
reasoning process; it’s a social process as
well. Different minds frame the situation
differently. Ideas overlap and conflict.

My colleague Bret Pettichord ex-
perienced this on a recent project. “We
started our risk list in a meeting with the
testing team,” he recalls. “We had a half-
dozen people and very quickly generated
a long list of risks. What was hard was
figuring out how to manage the list. We
had this long list of things to worry
about, but for many of the items, we
weren’t quite sure what to do.”

As Bret puts it, “Many of our items
were vague. One was ‘adjacent interfer-
ence.’ It meant something to the person
who added it to the list, but when we
came back to it later, we couldn’t remem-
ber what it meant. We also had lots of
different types of things showing up on
our risk list. Our risk list included risks,
as well as types of tests (such as load test-
ing), product features, and quality crite-
ria (such as scalability or security). We
needed a more precise understanding of
what a risk was and how it related to
other concerns.”

Bret was using the word “risk”
broadly here. Since testing is about find-
ing problems in products, risk-based
testing is about product risks. Bret’s
team listed a lot of things other than
product risks. Now, that’s okay for a

start. Getting a mishmash of ideas from
a brainstorming session is normal. Actu-
ally it’s a good thing. A core purpose of
brainstorming is to minimize the chance
that an important idea goes unrecorded,
even if a hundred weird ideas also come
out. The problem is that you can’t take
the raw output of brainstorming and ex-
pect to plug it right into a test plan. “We
were used to lists of tests or bugs that
gave you a list of things to do,” Bret
said, “so that when you were done,
everything would be checked off. We
were having trouble figuring out how to
check off the things on our list.” His
challenge was to transform the list into
something actionable.

Solution #2a: Categorize
risks by type.
One thing I find helpful is to make differ-
ent lists for the different kinds of things
that come up during risk brainstorming.
Basically, I want everything in a single list
to relate to a single kind of activity. That
way, I can pick up one list and work with
it without getting scattered and confused.
Here are some of the lists I use.

Product Risks List: problems that may
occur in the product (e.g., the Web server
may be too slow under a normal load). A
product risk motivates a test or a test
technique. Any specific product require-
ment can be reworded as a risk during
the risk analysis. For any requirement,
there is the risk associated with not meet-
ing that requirement. If a particular re-
quirement has little risk associated with
it, then either don’t list it as a risk, or
group it together with other risks such
that together they are worth listing.

What You Do with It: For each item
on this list, choose to do one of the fol-
lowing:

■ create tests to evaluate the risk

■ further investigate the risk (without
necessarily testing it)

■ accept the risk (not testing for it at all)

■ delegate the risk to someone else (per-
haps letting the developers mitigate the
risk by redesigning the product)

As the project progresses, use the product
risks list as a basis for reporting. By the
end of a well-run project, your testing
will have revealed enough information to

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

give management confidence that the sta-
tus of each risk is known.

Risk Factors List: conditions that tend
to create increased product risk (e.g., the
developers have not worked with this
Web server before). You don’t test for a
risk factor; you test in the presence of a
risk factor. For instance, “Feature X is
especially complex” does not suggest a
particular problem that you will try to
find in the product. It merely suggests
that problems of any kind are more like-
ly to occur in complex code. Another
kind of risk factor is a threat: a condi-
tion or input that stresses the product in
some way, and potentially exploits a vul-
nerability. To decide if a risk idea is a
risk factor or a product risk, ask yourself
what would happen if you reported it as
a defect. If the response would obviously
be “This is not a bug,” then it might be a
risk factor, but it probably isn’t a prod-
uct risk.

What You Do with It: Since a risk factor
is something that may lead to a product
risk, you can use the items on this list to
help you get ideas for what the product
risks might be and their potential severi-
ty. They might also help you think of risk
mitigation strategies (though that’s prob-
ably beyond the scope of testing), testa-
bility requests that you’ll want to take up
with the programmers, or specific tests to
perform. For example, “corrupted client
platform” might be a risk factor that
comes up during risk brainstorming. I’d
put this on the risk factors list, and then
ask what kinds of product failures are
more likely to occur with a corrupted or

misconfigured client platform. How
would we detect such a condition? How
can we create that condition?

Risk Areas List: groupings of similar
product risks (e.g., performance). A risk
area implies that there is at least one
product risk, and probably more, that
belongs to it. During a risk analysis, a
general category of quality criteria, such
as compatibility or performance, can be
thought of as a risk area. In other words,
the risks of not meeting compatibility
standards might lead us to include “com-
patibility” (or “incompatibility,” if you
prefer) as a risk area.

What You Do with It: The items on this
list may be used as headings in a risk-
based test plan, with specific risks grouped
underneath. Risk areas help you summa-
rize the risks and the associated test strate-
gies. For any risk area, you should be able
to imagine a variety of specific ways the
product may fail. If you can’t, then either
it’s not actually a risk area, or you need to
gather more information.

Issues and Questions List: a catchall
that includes things that need to be inves-
tigated or answered so that the project
can go forward (e.g., do we have the
budget to purchase a load-testing tool?).

What You Do with It: Resolve the issues,
escalate them, or ignore them. This is
standard project management stuff.

Product Components or Features
List: parts of the product that are per-
ceived to be associated with some elevat-

ed risk (e.g., Web server). A particular
component may have a whole complex
of risks associated with it. Try to get
those into the open.

What You Do with It: You can use this
list in risk-based test management to al-
locate your attention across the product.
I like to summarize the product into a
components list that fits on one or two
pages, and designate each area as requir-
ing “higher,” “normal,” or “lower” re-
sources. When a product component
comes up during risk brainstorming, you
can discuss whether it’s merely a normal
risk (I usually assume that everything
needs testing), or a higher risk compared
to other components.

Test Ideas List: suggestions for testing
(e.g., load testing). Test ideas are worth
capturing for later, when you are figuring
out how to test in ways that address the
risks. When important test ideas pop up
in a risk analysis, ask what the specific
risks are that motivate them.

What You Do with It: The items on this
list eventually find their way into the test
strategy or particular test cases.

Project Risks List: risks that affect the
success of the project, but not necessarily
the operation of the product (e.g., the re-
quirements documentation has not been
delivered). When risks come up in a
product risk analysis that seem to be
project risk factors, put them on the proj-
ect risks list instead.

What You Do with It: It’s probably not

30 STQE MAY/JUNE 2003 www.stqemagazine.com

Cem Kaner published a rather sweeping risk catalog as an appendix to
his book Testing Computer Software, but that catalog predates the
Web era. Now one of Cem’s students at Florida Tech, Giri Vijayaragha-
van, has put together a useful catalog of risks for testing e-commerce
shopping carts. Giri’s list includes items such as

■ not enough memory on the system on which the shopping cart data-
base resides

■ disk failures/hard drive crashes and other irreversible media corruption
of the shopping cart database that may cause complete loss of data

■ corruption of shopping cart database backup

Everything in Giri’s list relates to something you might do to test shop-

ping cart functionality. The relationship is not direct. This is not a list of
tests. But for every item on his list we can ask ourselves the question
“What kind of test could I perform that would find problems related to
that?” The list is detailed enough that it isn’t much of a leap to think of
specific tests.

I worry that if I depend on someone else’s risk catalog, I might not
make enough use of my own wits. So, if I were doing risk-based test
design of shopping cart functionality, I would not initially use Giri’s tax-
onomy. Instead I’d familiarize myself with the feature set and take a
few hours to think through the risks myself. I’d make my own list. Then
I’d pull out Giri’s list and check it against mine to see if there was
something important I had missed. By doing this, I can take more re-
sponsibility for the risk list I created, I can get all the value from Giri’s
list, and I may see some risks that Giri didn’t.

Using Prepublished Risk Lists

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

your job, as a testing organization, to
run the project or be the quality police.
Nevertheless, when project risks come
up while you’re brainstorming about
product risks, record them. Later, revisit
the items on that list, and decide which
ones threaten the testing part of the
project (those become an issue list for
the test manager) and which ones
threaten the rest of the project (those
you confide to the project manager or
other people).

Risk Mitigations List: things you want
to do in order to reduce risk (e.g., limit
access to the production server). The
items on this list may be beyond the
scope of the test project.

What You Do with It: Unless you have
control over the project, pass these ideas
along to the project manager.

This is not an exhaustive list of cate-
gories; I’m not sure one exists. If you find
that some other category of information
is offered during your risk brainstorming
session, and you can’t shoehorn it easily
into these categories, then make a new
list. For any new list you create, answer
the question “What do I do with this?”
Otherwise, don’t make the list.

You might make these lists during
brainstorming, categorize the items after
brainstorming, or do brainstorming that
focuses on only one kind of item. Of
course, you can also keep everything
lumped together in one big ol’ list, as
long as you know what to do with each
type of idea.

Solution 2b: Know your
frame of reference.
Remember what a risk is. I like this defi-
nition: the danger that something bad
will happen. For any product risk, ask,
“What is the something that can happen?
How bad could it be? How likely is it?”
These questions require us to determine
causes and effects. One reason lists get
muddled is that people get lost in a
labyrinth of causes and effects.

Take “incorrect input” for instance. Is
this a cause or an effect? Is incorrect in-
put something that might trigger a failure
in the product, or is it the effect of a
poorly designed user interface? Or does
this incorrect input result from the out-
put of another subsystem that must have
already failed? Depending on your frame
of reference, this may or may not be a
product risk. There is no one right an-

swer here. What the user experiences as a
product is a long and convoluted chain
of causation. We test all along that chain.

One way to keep your bearings is to
think in terms of this generic chain: Vic-
tim p Problem p Vulnerability p Threat.

■ Victim: someone who experiences the
impact of a problem. A bug is important
only if it victimizes a human.

■ Problem: something the product does
that we wish it wouldn’t do. (You can
also call this failure, but I can imagine
problems that aren’t exactly failures.)

■ Vulnerability: something about the
product that causes or allows it to exhib-
it a problem, under certain conditions
(also called a fault).

■ Threat: some condition or input exter-
nal to the product that, were it to occur,
would trigger a problem in a vulnerable
product.

In terms of this chain, we can say that
someone may be hurt or annoyed because
of something that might go wrong while
operating the product, due to some vul-
nerability in the product that is exploited
by some threat. This is essentially a short
story about risk. Whatever risk idea
comes to your mind, find its place in the
story, and then try to flesh out the other
parts of the story. To do that, you need to
set your frame of reference: Decide what
product or subsystem thereof you’re talk-
ing about—what is the thing that has the
vulnerability, faces the threat, exhibits the
problem, and impacts the victim?

www.stqemagazine.com MAY/JUNE 2003 STQE 31

Sample Risk Brainstorming
Let’s say your team holds a risk brainstorming session and the result is a long list of
items such as

Performance and usability.

Very large transactions.

We don’t know enough about Web services!!!!

Automated regression testing not possible on hyperbolic tree component. Also, we have no
control over its source code.

Web server failure.

Take a moment and try to categorize these items:

Performance and usability. Risk areas. The next step is to get more specific about
each of them.

Very large transactions. Could be risk driver, test idea, product risk, or product
feature. Who knows? This one needs more context.

We don’t know enough about Sounds like a risk factor that someone thinks is pretty
Web services!!!! important. It may also be an issue, a project risk, and a

product feature. More information, please.

Automated regression testing Two separate items stuck together: the first one looks
not possible on hyperbolic like an issue or a project risk, and the second one seems
tree component. Also, we have to be a project risk and possibly a product risk factor.
no control over its source code. Together, they also suggest that special attention may

be needed to properly test hyperbolic trees (if we decide
it’s important to test at all, that is).

Web server failure. Could mean anything. This is just too vague unless the
meaning is obvious from the context of the project.

Most of these items, I believe, would benefit from some expansion or context setting.
In some cases, discussing them among the project team might lead to dozens of spe-
cific new items for our lists, and a much better idea of what to test for.

5

4

3

2

1

5

4

3

2

1

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

PROBLEM #3:

“Nobody
on my
project

wants to
talk about

risk.”
Risk is scary, and it can be emotional. If
you’re a designer who has just successful-
ly argued for using a new and untried
technology in your product, you might
not want to admit publicly that your idea
carries risk. If you’re a customer, you
might not like to hear that the product
you are about to use is full of risks. If
you’re a corporate lawyer, you might be
nervous about the liability of risk lists
floating around, ripe for subpoena. I’ve
seen senior managers expect and assume
that all risks are “managed,” which real-
ly means eliminated.

It can be difficult to get people to talk
frankly about risk. Or if they do talk, it
can be difficult to get them talking in spe-
cific, rational terms. By bringing up risk,
you may be accused of being “negative,”
as if the very idea of looking for prob-
lems brings them upon the project.

Solution #3: Shift the focus
from risk to choices.
You can’t test everything equally. And
even if you could, it would be too expen-
sive. This leads to the rallying cry of the
risk-based tester: Let’s make smart
choices.

If people on the project don’t want
you to talk about risk, fine. Start talking
about choices. No one can escape choic-
es. What should we test? How intensive-
ly? Why test more of this than of that?
Without uttering the word risk, you can
get people talking about it.

Another tactic is to do your own risk
analysis in private, and then announce
your choices about what needs testing.
Listen carefully to the reaction of man-
agement and developers. This is sort of a
“stone soup” approach: By proposing to
serve them a stone, you might get other
people to contribute some soup. Propos-
ing my own risks list rarely fails to get
people to talk to me, if only to object to
my choices. When they do, I get more in-
formation about risk.

PROBLEM #4:

“I don’t
know that

it’s not a
risk. Does

that make
it a risk?”

Every risk you identify starts as little
more than a rumor. You don’t know, pri-
or to testing, what bugs are in the prod-
uct. You don’t even know what the prob-
ability of any particular bug is. You
might know that certain problems are
possible, but that’s about it. This makes
risk analysis harder, because uncertainty
can feel like product risk.

But there’s a big difference between
something you know is a risk and some-
thing you fear might be a risk. It’s the dif-
ference between knowing you are in dan-
ger of being stung by a hornet because
you see a hornet buzzing around your
bedroom, and not knowing that you
aren’t in danger of being stung because a
hornet might be hiding somewhere.

This distinction is key to deciding
which risks are severe and which ones
are only mild. When you’re trying to
compare the magnitude of little-known
risks with that of risks you know a lot
about, there’s a temptation to inflate the
importance of those risks you have less
information about. That can lower the
credibility of the whole risk analysis.

Solution #4: Distinguish
informed risks from
uninformed risks.
When I categorize product risks, I cate-
gorize them in two major dimensions:
magnitude and level of information. The
scale I use most often for information is
lots, some, little, and none. (I like to keep
it unpretentious.)

By distinguishing risks by level of in-
formation, we provide a vital bit of per-
spective for people reviewing the list. We
are more confident in our assessment of
informed risks than we are of unin-
formed risks. If we say that a risk is se-
vere, but that we have little information
about it, then we’re basically saying
there’s some cause for concern. By inves-
tigating that risk, including testing
against it, we gain information. Our goal

as testers is to turn all important risks
into well-informed risks. It may be that
doing so causes us to discover that a giv-
en risk isn’t much of a risk after all. Or
maybe we confirm that a risk is severe,
and that motivates management and the
developers to take action to improve the
product and lower that risk.

Revealed: The Great Secret
of Risk-Based Testing
Now for a helpful idea that cuts across
the whole spectrum of risk-based testing:
Bad risk analysis is a self-correcting
problem. This is true because if your test-
ing isn’t risk-based enough, then you will
probably ship with important problems.
Then you will say, “Whoa! Next time,
let’s put more focus on problems like
that.” That cycle of learning is a funda-
mental part of engineering everything
from bridges (see To Engineer Is Human
by Henry Petroski) to airplanes (read any
NTSB aircraft accident report). That’s
why you should not be too hard on your-
self when you’re using risk-based testing
on a new product line, where you don’t
have the benefit of experience. Some
risks you will be able to anticipate, and
some you won’t. There is no way to
know for certain, in advance, what the
risks will be. All anyone can expect of
you is to be thoughtful and resourceful,
make people aware of the limitations of
your analysis, and learn from experience.

The failures that escape our testing
net will condition how we test in the fu-
ture—if we’re paying attention. Just bear
in mind what Mark Twain said about
that: “We should be careful to get out of
an experience only the wisdom that is in
it—and stop there; lest we be like the cat
that sits down on a hot stove-lid. She will
never sit down on a hot stove-lid again—
and that is well; but also she will never sit
down on a cold one anymore.” STQE

James Bach owns Satisfice, Inc. (www.
satisfice.com), a consulting and training
company specializing in rapid software
testing techniques. James would like to
thank Bret Pettichord and Tracy Balko-
vic for their comments and encourage-
ment about this article.

32 STQE MAY/JUNE 2003 www.stqemagazine.com

STQE magazine is produced by
Software Quality Engineering.

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

