
guides practice, practice is a practitioner
applying a method to cause an event, and
process is the resulting pattern of events. I
take a dynamic, systems view of projects;
I believe that process emerges as multiple
practitioners apply multiple methods in
response to their moment-by-moment
understanding of the state of the process.

The view deepens further when I con-
sider that any software development prac-
tice worth talking about involves sig-
nificant problem-solving. And that any
problem-solving activity is potentially an
open-ended project, dependent on the skill
and motivation of the practitioner.
Competent software people don’t simply
“follow” methods, the way one might fol-
low a mechanical formula for long divi-
sion. People breathe life into methods.

HEROES MAKE THE SYSTEM GO
The ability and propensity of people to

both invent processes on the fly and adapt

processes to the circumstances at hand is
indispensable. That is why heroism—at
least heroic ingenuity and occasionally
heroic effort—is essential to software engi-
neering. Heroes are people who take ini-
tiative to solve open-ended problems. Our
methods should be designed to empower
heroes and help them work together: How
to be a responsible hero and how to man-
age heroes should be part of the official
body of knowledge that defines our craft.

Why must we rely on heroes? Why not
make methodology more complete and
sophisticated so we can succeed without
heroes? Because that’s impossible, by defi-
nition. Software development without
human problem-solving is not called devel-
opment, it’s called a compiler.

Useful tools, however, can improve the
reliability and capability of heroes. Which
brings us to defined methodologies.

Methodology documents are notori-
ously incomplete and oversimplified. This

February 1997 129

S
o

ft
w

a
re

 R
e

a
li

ti
e

s

A methodology gap can manifest in sev-
eral ways. It could be that a method can’t
be practiced, shouldn’t be practiced, or
simply isn’t practiced as designed. The gap
is not necessarily a bad thing—we can
productively strive for ideals that will
never be perfectly achieved. But when
such a gap goes unrecognized, or calcifies
into a tradition of self-deception, it can
suck the marrow out of your efforts to
control or predict your software develop-
ment process. 

The causes of a methodology gap are
usually subtle and complex. Methodol-
ogists or management may not under-
stand the realities faced by practitioners.
Practitioners may not understand or
respect the methods. Or they may forget
them accidentally or apply them recklessly.
The methods may be poorly designed or
poorly communicated.

The gap can also perpetuate itself.
When practitioners know that publicly
accepted methods aren’t really followed,
what incentive do they have to embrace
any new idea that comes along? Process
hypocrisy leads to process cynicism and
vice versa. A vicious cycle.

SOFTWARE PROCESS IS DYNAMIC
Slippery language encourages the con-

fusion of method with practice. It’s hard
to communicate precisely on this subject.
The dictionary definitions of “method” (a
means or manner of performing or effect-
ing something), “practice” (the act or
process of doing something), and
“process” (a series of actions, changes, or
functions bringing about a result) are eas-
ily confused. To me, method is an idea that

W
e who read this magazine
and also work on real pro-
jects are caught between two
worlds. In one, we absorb
the advice of pundits on the

proper development of software. In the
other, we huddle in our cubicles and actu-
ally do it. Unfortunately, these worlds are
fundamentally disconnected and some-
times even unrecognizable to each other.
This leads to what I call the methodology
gap. The wider the gap, the less relevant
software engineering ideas are to practice.

METHODOLOGY GAP
Everyone who writes articles, makes

presentations, or specifies any sort of pol-
icy intends their work to be useful. But
usefulness is situational. To say that a
hammer is useful is to say that we know
of important situations in which some
worthwhile benefit would be gained by
using a hammer. A useful hammer is nec-
essarily a component of a good solution to
a problem that matters. Otherwise a ham-
mer, although it may be an aesthetically
interesting sculpture, isn’t useful.

To create any useful tool, therefore, we
must anticipate both how it could be used
and how it would be worth the effort and
cost to use it. We must then have the skill
to design the tool and the ability to deliver
it to a client in such a way that they see its
usefulness and are inclined to use it.
Software engineering methods—by which
I mean any strategic or tactical ideas
intended to guide the practice of develop-
ing software—are tools, too. A methodol-
ogy gap exists whenever a stated method
doesn’t correspond to effective practice.

The Hard Road
From Methods 

to Practice
James Bach, ST Labs

We who read this
magazine and also work

on real projects are
caught between two 

fundamentally
disconnected worlds.

.

James Bach
 

James Bach
Copyright (c) 1997, IEEE Computer SocietyAuthor Contact: james@satisfice.com



130 Computer

is not necessarily a problem, of course, if
the people who design methods share
enough of a reality with those who will
interpret and apply them. Show an electri-
cal engineer an electronics schematic and
he can build a stereo. Show the same
schematic to an untrained person and he
won’t know what to do with it. At ST Labs,
I ran into this problem when I first defined
test processes for our staff. At the time,
almost all of our testers based their process
on these simple principles: understand the
product, try its major functions, report
anything that looks wrong. This strategy
led to a wide variation of processes, some
terrible and some good enough, depending
on the skill of each tester and the particu-
lars of the product.

When I tried to define our methods, I
found myself struggling with ever longer
descriptions, descriptions that fragmented
into families of subdescriptions as I tried
to convey basic information as well as
variations in technique. I eventually real-
ized that defining high-level instructions
for general testing was not going to be use-
ful until we trained everyone about what
test techniques were in the first place.
Good method documentation goes hand
in hand with a staff skilled in interpreting
those descriptions so that they solve the
right problems at the right time. Method-
ology and the people who practice it are
one system.

Skill in ergonomic design and method
documentation is rare. Most methodolo-
gists settle for simple linear descriptions of
software processes that aren’t linear at all.
They write processes as if they were writ-
ing programs for robots. They write for rule
followers rather than problem-solvers.
They smooth out all the political incorrect-
ness of actual software development and
create documents that are hard to use. Then
they drop them onto an organization like
propaganda leaflets from a spy plane, trust-
ing management to sort everything out.

I don’t want to be too hard on the
methodologists, though. I’ve designed a lot
of bad methods myself. I have a drawer full
of them. It isn’t so easy to tell when meth-
ods are poorly designed or documented. A
lot of methods can work, in principle, if
we only devote enough energy to them.
People have been known to quit smoking
cold turkey, after all. It could easily be

argued that this method of quitting smok-
ing is sound; it simply requires the quitter
to exert enough willpower. It’s certainly
easy for me to argue this, since I’ve never
smoked. Perhaps better management is
what we need?

THE MYTH OF MANAGEMENT POWER
It’s commonly assumed that methodol-

ogy is so strongly related to practice that,
given adequate management, methods and
practice are practically the same thing. Set
your methodology and, if management
does its job, practice will follow. The com-
plexity of software process ideas and real-
ities are thus compressed into a neat
morality play, as we solemnly scold that
“process improvement begins at the top.”

Management is the big bear rug under
which we sweep our most unsettling prob-

lems. The truth is, management is 
impotent to directly influence software-
development practices. Managers have 
little true power to control intellectual
workers. As chief engineer at ST Labs, I
theoretically have the authority to dictate
to any tester at ST Labs what is and is not
an acceptable testing practice. Big deal.
There’s no way I can know, except in little
bits and snippets, what anyone is really
doing. If I do encounter someone who is
clearly and presently doing a poor job of
testing, I have to walk on eggshells about
it or risk crushing morale. For one thing, I
can’t know all the circumstances sur-
rounding the situation, for another, any-
thing I say or do will be, at best, a
temporary fix. It takes sustained training
and mentoring to effect real performance
improvement. 

It’s a fantasy to think that top manage-
ment has the power, by simple force of
will, to assure that good methods are fol-
lowed. Using direct authority to force or
intimidate intellectual workers only cre-
ates the kind of resistance that absolutely

guarantees a methodology gap. Man-
agement is powerful, but it takes more tal-
ent and training than most managers have
to coax an organization to improve
quickly.

Software development is a problem-
solving enterprise of fantastic com-
plexity, engaged under variable

conditions with limited time and
resources, for the purpose of creating a
good enough product. Methodology
development is a similar enterprise, but
one whose methods are even less well
understood than those of software devel-
opment. There are few if any professional
organizations for methodology develop-
ers, few resources, and the art is primi-
tive. Methodology development requires
a rare bundle of skills—from technical
writing to politics to general systems
analysis. 

If software development practices and
methodologies are to come together, their
realities must be reconciled. That’s where
we come in, we the readers of magazines
like this. To get a handle on those realities,
we need to be software project naturalists
first and moralists second. We must
observe how systems do work, before
deciding how they should work. We must
acknowledge the limitations of our obser-
vations and the many overlapping and
contradicting values that must be accom-
modated. We must learn how to commu-
nicate methods in such a way that
practitioners are empowered, not penned
in. There are a few pioneers who have
made headway on this path: Gerald
Weinberg, Bob Glass, Tom DeMarco, Tim
Lister, Ed Yourdon, and Fred Brooks, to
name a few. I can provide a full bibliogra-
phy, if you’re interested.

As a software testing methodologist, it’s
my job to question emperors and tip
sacred cows. The number one occupa-
tional hazard for testers is tunnel vision,
and I can’t help but feel that this industry
is in a bit of a tunnel. I’ll try my best, with
this department, to find some daylight. So
long as our true practices are shrouded by
a false view of our methods, we will be
frustrated in our efforts to close the gap
between our current experience and that
grander success we keep reading about. ❖

The complexity of
software process ideas
and realities cannot be

compressed into a
neat morality play.

.




