Appendices, v5.5

James Bach
james@satisfice.com
www.satisfice.com

Michael Bolton
michael@developsense.com
www.developsense.com

Copyright © 1991-2024, Satisfice, Inc.


mailto:james@satisfice.com
http://www.satisfice.com/
mailto:michael@developsense.com
http://www.developsense.com/




RST Appendices

Process Documents

Rapid TeStiNg FramMEWOIK ........cceeieeieceece et ere s 1
How RST is Different Than Factory-Styl@ TESHING ......cceovieieieniresesesesesee e 3
Heuristic Test Planning Context MOdel ... 7
How To Evolve a Context-Driven TeSt Plan .......cocoiiviririeieresesese e 9
Satisfice Heuristic Test Strategy MOGEl ..o s 17
Testing SKillS and DYNAIMICS  .....ooeiiieieiieseeie ettt s nneeneas 23
ADOUL ROIES NG ACIOIS ...ttt nee e 31
Heuristics of Software TeStability .......ccooeiiririrer e 33
Heuristics Of RISK ANGIYSIS .....coiiiiieeee et 37
[€ToTolo ll =00 1N e o 1@ U7 Y/ 41
BUG FIX ANBIYSIS .ottt bbbttt e e e e 43
A CONCISE QA PIOCESS ..uvieiiiiiiie sttt sttt ettt s e et s e et e e st e e be e s seeebeesaeeebeesseeeseesnenans 45
Example Test Notes and Supporting Documents
Putt-Putt Save the Zoo Test Coverage OULHINE ......cooeierieiicere e 49
Table FOrmatting TESE INOIES  .....ooeieieieee et 51
DISKMAPPEr TESE NOLES ....ccviceeecieciecie sttt st esa e ae e e e sre e teeneesreenes 53
EXPlOratory TESHNG NOIES .....cc.oiiiiiiiiieieiesie sttt se e 57
FS | I S Q0% = o SRR 77
TNT QA TaSK ANBIYSIS .oueiieiiiiieiieeieeieee ettt bbbttt e et e eeneennas 79
Example Test Plans
PCE SCENArio TESE PLan ..ot 81
Risk-Based Test Plan (OWL) ..ottt 89
RISK-Based TESt PlaN #2 ..ottt aenne e 97
Example Reports
Y 2K ComMpPlianCe REPOIT .....ccveeieceiecieeie ettt r e esreeste e e e sneenseennas 103
TESEREPOM - MPIIM ettt e ne e e et e e e eenreanas 113
TwO Hour Test REPOI (OEW) ...ttt st 119
Readings
HOW t0 Talk ADOUL TESLING  ...ooveiiiiiiiieiieieie et 121
Investigating Bugs: A Testing SKillSStUY  ......ooviiieieiee e 133
Rapid Testing Guide to Bug REPOIMING  .....oceeiiieieieesece e 143
A Context-Driven Approach to Automation in TESHNG  ....ccceeveeerererenenesesee e 151
Tait Testing CliniC: RST CaSE SIUAY  ....ocueeiieiiiiie et s 177
Resources
Rapid Testing Bibliography ........coeceiieee et 187

Version: rst5.5_satisfice






A Rapid Testing Framework

Context

"In this murky, complex, volatile, social world,
and given our limited time and materials..."

People

"...there are people who matter..."
/
Development
Product Risk

"...there is a danger that the product will
violate requirements, causing harm."

—

Requirements
"...who have both explicit and tacit
needs and desires for a product."

"As the product and requirements develop,
and perhaps long afterward, too..."

Mission
"We strive to serve our clients
by understanding requirements,
examining the product as needed,
and evaluating risk."

Test Strategy
"To fulfill our mission we develop and refine
a requisite variety of ideas that guide..."

"reasonably inexpensive, yet effective actions,
whether formal or informal, deliberative or spontaneous,
for the purpose of performing tests. These actions include:"

Testing Story

An explicit and tacit narrative
about the status of testing.

Learning

"Gaining skill and knowledge about the product, related
technology, and context of its use, by any useful means,
-~ to develop mental models by which to test."

Reporting
"Making sense of the test process, progress, and results
and rendering that into a compelling
testing story."

P )

~
Skills & Heuristics
"Applying skills, knowledge, and
fallible methods of solving problems..."

/

Test Results

Explicit and tacit outcomes of specific
test performances including data about
bugs, curios, risks, new ideas for tests,
test tools or testability.

I Testers & Team

"responsible testers do the work
while soliciting the help of others, too..."

Testability

"while advocating and establishing
practical testability of the product.”

AS

Explicit and tacit representati

of the product or context of use
that reveal specific factors to
examine or manipulate.

Performing Experiments™ wu
"Enacting and adapting our procedures
to discover reliable answers
to our questions about the product."

-— De5|gn|ng Experlments
"Synthesizing ideas, structures, processes,
and tools by which we can systematically
explore the status of the product.”

Test Procedures

Explicit and tacit methods
by which we configure, operate,
observe, and evaluate the product.

7\

—

Test Lab & Tools

"Applying and evaluating our tools
and test lab infrastructure..."

Coverage

"...while observing and manipulating

o
-

Oracles
"...and applying our knowledge, tools, and feelings
to recognize problems when we encounter them."

the product both intentionally and incidentally..."







How is Rapid Testing different from “Factory Style” testing?

Factory Style

(e.g. ISTQB, TMap, TPI, ISO/IEEE standards,
Six Sigma, TQM, CMM, RUP)

Rapid Software Testing

Basic Idea | Follow industry consensus (“best practices”) and Fulfill our mission for our clients by developing and applying
principles of efficient manufacturing. skills and heuristics.
Products are technological artifacts. Testing is a repetitive | Products are solutions that fulfill some need. Testing is an
process of collecting facts about products. Humans are adaptive process of learning and analysis involving a great
relatively unreliable, however, and skilled people are variety of experiments, observations and inferences about
expensive and hard to find. It's therefore important to use | products. Although it is not possible to fully define or
a testing methodology that minimizes reliance on formalize that process, skilled humans are uniquely able to
subjective factors and tester creativity. We can do this by perform it. We therefore choose to use a methodology that
structuring tasks in a manner reminiscent of a maximizes freedom, self-regulation, and responsibility. We
manufacturing plant—explicitly defining procedures and can do this by structuring training and culture in a manner
then monitoring adherence to those procedures. reminiscent of hospitals, law firms, or elite military units—
using practical drills, realistic missions, and other scalable
training methods (along with expert mentoring) to build
skills and create a culture of excellence. The people who do
the work then structure their processes as needed.
Notion of | A productis a system of elements and behaviors that fulfill | A productis a system of elements and behaviors, created by
Product explicitly defined requirements. The quality of a productis | people, that creates a desirable experience or solution for
X how well it conforms to those requirements. Quality other people. A product is always produced in some set of
Quality | should be measured objectively. circumstances (we call that the context) and is delivered to
some other context. Value has many aspects, some of which
cannot be made explicit. Meanwhile, context may change
over time. Therefore there can no such thing as an objective
or unchanging measure of quality. We can, however, discuss
and construct a useful consensus about what value we think
we're delivering.
Purpose of | The purpose of testing is to detect non-conformances The immediate purpose of testing is to understand the truth
Testing between a product and its specifications, so that they may | about the product. This in turn is done for other purposes.
be resolved. Specifications may exist on several levels, Usually the broader purpose is to find bugs. That means
which leads to the concept of verification and validation. informing our clients about what they would consider to be
Verification means checking a component against its anything about the product that threatens or unduly limits its
immediate spec, while validation means checking that it value. In that case, a tester acts as an agent for people who
fulfills its ultimate requirements (that it is “fit for have the power to decide what the product should be.
purpose”). Testing is sometimes done for other broad purposes, too,
such as evaluating another testing process, training testers,
or helping customer service prepare to support the product.
Central | Does the product pass all the tests? Are there formal tests Whom do we serve? What matters to them? Are we confident
Questions of for each defined requirement? we know all the important problems in the product
R (regardless of defined requirements)? Without wasting our
Testing time or resources, is the testing adequate to detect every
important problem that could reasonably be found
(regardless of the formality of the testing)?
Unit of | The unit of testing work is usually a "test case,” which may | There are no fixed "units of work" as such in RST. Testing is
Work be a detailed set of instructions or a set of data for feeding | conceived as a deep intellectual process rather than an

to a formal (and perhaps automated) fact-checking
mechanism. Often used interchangeably with the term
"test."

algorithmic mechanism. However, the central unit of concern
in RST is the "test.” A test is an experiment performed by a
tester for the purposes of evaluating a product. Tests are
usually embedded in a broader entity called a "test activity."
Test activities may be structured in sessions (uninterrupted
blocks of time), threads, or phases. Test sessions may be
amenable to counting, and in Session-based Test
Management they form a reasonably comparable unit of
work that can be made visible to outsiders.




Method of
Control

Artifact-based and procedure-based management: The
process is intended to be manageable, ultimately, by non-
testers or testers-not-present, using detailed instructions
communicated explicitly via formal documents. These
instructions (which may be loosely called “scripts”) are
followed by testers who are not expected to manage the
value of their own time (but are expected to faithfully
follow the instructions).

Documents generally include: test plan, test case
specifications (probably including test procedures as
well), test results, occasionally a traceability matrix, too.

People-based and activity-based management: A tester
managing a test process is called the "responsible tester” for
that work. In RST it is important to trace who is responsible
for each aspect of testing, and for that tester to be
appropriately equipped and skilled in order to fulfill that
role. Skilled testers manage their own processes (which may
include personal supervision of unskilled testers) via a
negotiated mission, formal and informal heuristics, and
ongoing evaluation and communication of the emerging
“testing story” comprised mainly of a description of test
activities.

Testing generally proceeds in an exploratory fashion, even
though it may be formalized (“scripted”) to some degree at
the discretion of the responsible tester. Also, at the tester’s
discretion, many different forms of documents may be used
to help manage the process. Documents are as concise as
possible to minimize maintenance cost and maximize testing
value. Typical documents include: risk outline, product
coverage outline, test activity outline. These are often
manifested as mindmaps or post-it notes.

If high accountability and frequent formal reporting is
needed, consider using thread-based or session-based test
management to package and monitor test activities.

Do not use metrics for any purpose of controlling people; use
metrics only for purposes of casual inquiry, so as to provoke
useful conversations.

Another form of control is explicit heuristics, such as
guidewords arranged in checklists that provide a reviewable
structure to testing that helps when training, coordinating, or
assessing groups of testers.

Approach to
Estimating
Work

Estimate required test cases based on review of
specifications, if possible. Otherwise estimate by analogy
to comparable projects.

Estimate work incrementally as you test or prepare to test,
using the test estimation poster heuristic. Use all available
information to identify necessary activities as well as any
obstacles to the test process. Do not pretend to be able to
predict how many bugs or builds or changes you will have to
deal with—all of which may strongly impact testing.

Avoid estimating if possible, but if needed, estimate test
effort for an ideal (i.e. bug-free and instantly available)
individual test cycle (i.e. testing needed for a single build)
based on a requisite variety of test activities mapped to the
full breadth of coverage areas. Express the estimation as a set
of test session counts.

Approach to
Test Design

Apply any of a list of named test techniques such as
“equivalence class partitioning,” or “boundary testing.”
Another approach is to itemize the parts of the
specifications and write instructions that “try” or “tour”
each of them.

Whatever test design method is used, it should be
standardized across the organization.

Test design is identical to experiment design as practiced in
the sciences. All the methods and skills used in science are
potentially relevant to software testing. We proceed by
conjecture and refutation.

Test design skill is gained through training and practice. Test
techniques are heuristics that require skill, otherwise they
are hollow.

The basic method of test design is to model the productin a
requisite variety of business-relevant ways, then determine
ways to operate and interact with the product that “cover”
the product with respect to those models while applying a
requisite variety of business-relevant oracles to detect
problems.




Ideal | 1.  Receive correct specification. There is no ideal sequence. Sequence and phasing of work is
Sequence of 2. Create test cases based on specification. entirely contingent on the testing context. We ask ourselves
3. Setup the test lab and facilities. “what’s a good thing to do now?” Here are some general
Events | 4. (if possible) Automate test cases. things that happen, which may happen in any order or
5.  Receive product to test. portion, simultaneously or incrementally.
6.  Run (or re-run) tests.
7.  Report problems. . Learn about and model the product.
8.  Receive new product with bug fixes. e Analyze product risk.
9. Re-run tests and verify fixes. e  Conceive of worthwhile test activities.
e Testthe product and report problems.
. Explain and justify the testing.
. Formalize the testing to improve test integrity.
. Deformalize the testing to expand test coverage.
. Set up the test lab and facilities.
. Modify, redirect, and improve the work as conditions
change.
. Stop doing things that aren’t helping enough.
. Develop and improve relationships with the team.
. Discover and experiment with new tools and methods.
Attitude | V-Model or Waterfall. Prevent disruptive changes by We use an agile approach. We focus on preparation rather
Toward | Proper planning in advance. Document the plan in detail, than planning. We focus on lowering the cost of exploratory
and prepare test plan and test cases in advance. cycles rather than deciding things up front. Whatever plans
Change Disciplined planning and communication eliminate are made are going to change, so let’s adapt to that change
surprises, later on. quickly.
Method of | Review testartifacts. Review traceability of test cases to Discuss the testing with responsible tester. Personally
Assessing requirements. Capture and monitor metrics based on test opserve testing _(or Flemonstrations thefeo_f). Observe and
. case counts. Check whether documents conform to all discuss the application of relevant heuristics. Evaluate the
Testing | process requirements. Possibly monitor code coverage test strategy and test results relative to the needs of the

using appropriate tools. Count bugs that escape the test
process.

business (we call that "test framing"). Don’t count bugs that
escape the test process (the count doesn’t mean anything),
instead investigate and learn from each one.

Definition of

All tests performed. Planned testing is complete. At this
point the product is considered validated. The test results

All important questions about the status of the product have
been answered. Clients are able to make well-informed

Done or report is then “signed off” by management. decisions about it.
Complete testing is impossible and there is no test for
“always works.” Instead we are obliged to stop when we
conclude that further testing does not seem justified. Since
we may be wrong about this, we evaluate the testing partly
by the performance of the product in the field after the
product is released.
Since understanding of risk changes over the course of
testing (testing is, in fact, an empirical form of risk analysis),
we cannot rely on specific pre-specified “exit criteria” to
decide when to stop. Furthermore, development activity
constantly changes our baseline of understanding.
Role of | Humans may play any of four roles in Factory School The role of humans is central. There are three basic roles:
Humans testing: designing methodologies, designing test test lead, responsible tester, and supporting tester. A

procedures, automating test procedures, or following test responsible tester is a tester in charge of testing some part of

procedures. Methodologists are rarely necessary. Instead, a product, and is able to control his own methodology,

following perceived consensus standards and "best procedures, tools, and activities. A test lead is a tester with

practices" is preferred. Test designers are not necessarily three additional responsibilities: creating the conditions

the same people who follow the test procedures that the necessary for testing to succeed, coordinating the activities of

designers create, but might be. Test design and execution other testers and helpers, and training testers. A supporting

are almost always two separate processes, however, tester is someone who does testing activities under the

regardless of whether they are done by the same people or | supervision of a tester or lead, but is not responsible for the

different people. Automation is important, because tools value of his own time. A supporting tester may be a senior

are seen as a way to make test execution cheap and person, such as an experienced developer, who is

reliable. temporarily assisting the test process, or perhaps a novice
tester not yet ready to take full responsibility.

Core | The core skill is procedural discipline (in other words, the The core skill is ability to learn. This relates to curiosity, play,
Required ability to follow instructions). Strongly relates to the puzzle-solving, and tolerance for confusion.

Skill

ability to write instructions.




Tester
Diversity

Testers should be interchangeable. The test process
benefits from standardization and formalization on all
levels. Industry-wide certification makes it easier to find
and foster appropriately qualified testers.

Each tester is unique, just as each lawyer, writer, or doctor is
unique. Two testers may both be qualified to serve the same
project, but we do not expect them to use the same methods
or strategies, or perform the same tests in the same ways. For
maximum effectiveness, a tester should work in a way that
best exploits his own talents and temperament. The
appropriate unit of analysis is the team, not the tester.
Testing is served best by a diversified team—because that
minimizes the probability of missing an important problem.

Role of Tacit
Knowledge

There is no official role for tacit knowledge, although some
techniques are defined as “experience-based” and job
descriptions sometimes call for a certain number of years
of experience, presumably because that may be correlated
with higher competence of some unidentified kind.

Tacit knowledge is extremely important. The RST
methodology is based on the premise that much of
competence is tacit (unspoken) and is conveyed not through
listening or reading to explicit instructions, but rather
through observation of natural work, deliberative practical
problem-solving, and live coaching by a supervisor. RST
makes extensive and systematic use of heuristics that
activate and direct tacit knowledge and skill.

Shifting
Work to a
New Tester

The role of humans should be minimized. In a well-run
factory-style test process, it shouldn't matter who is doing
the testing. The testing artifacts define the testing so that
anyone can read them. Any new tester reads the
documentation and follows the procedures. Automation
should be used wherever possible to make this a moot
point.

The role of humans is primary. Every tester is different. No
one is interchangeable, even though all competent testers are
potentially interoperable.

Any skilled tester is capable of testing any product from
scratch, to a reasonable degree, given reasonable time to
prepare. Any unskilled tester will be working under
supervision. If there are no skilled testers, then good testing
will be impossible no matter what methodology you try.

In any situation where testing is or should be formalized,
records of some kind are typically produced. Concise notes,
tables, or other artifacts—up to and including extremely
detailed and rigorous test procedure documentation—may
be created. A tester may use such material to take over
testing from another tester. However, the receiving tester
must be able to take full responsibility for the contents of
what he inherits.

Any mysterious document or tool must be discarded or
recreated. Mysterious instructions are a potential hazard to
the project.

Testers may also pass work to each other through paired
work, or through talking or live demonstration.

Role of
Tools

Tools should be used to store and track testing documents
and artifacts, as well as to automate test execution as
much as possible.

Tool use should be standardized across the organization.

In RST, we say testing cannot be automated, because any
testing-like activity done exclusively by an algorithmic
process is called “checking.” We do this for the same reason
that programmers call automated programming “compiling.”
It is important to distinguish between the capability and
responsibility of humans vs. that of machines.

However, testing may be supported and expanded by the use
of tools. Testers and test teams are strongly encouraged to
innovate and experiment with tools. Testers should develop
or acquire any tools that might help make their testing more
powerful or reliable, as long as these don't cost too much or
create an unhelpful bias in test coverage.

While it is not required or even desirable for every tester to
be a programmer, a high functioning test team will have the
ability to put tools in place quickly and inexpensively as the
needs arise.




Heuristic Test Planning:
Context Model

Designed by James Bach, http://www.satisfice.com
Copyright (c) 2000, Satisfice, Inc.

Missions
Advise about QA

Find Important Problems

Assess Quality/Risk Advise about Testing
Certify to Standard Advise about Quality
Fulfill Process Mandates Maximize Efficiency

Satisfy Stakeholders Minimize Cost
Assure Accountability Minimize Time

Development Requirements
Product Product Mission
Project Lifecycle Stakeholders
Project Management Quality Criteria
Configuration Management TeSt Reference Material
Defect Prevention Process
Development Team
Strategy
Logistics
Products

Test Lab

Test Platforms

Test Team

Expertise

Loading Test Tools

Cohesion Test Library

Motivation Problem Tracking System
Leadership Office Facilities

Project Integration

v1.2

How Context Influences the Test Plan

Exploit

“?Require /Motivate
Enable//"
Constrain




Context-Driven Planning

1. Understand who is involved in the project and how they matter.

2. Understand and negotiate the GIVENS so that you understand
the constraints on your work, understand the resources available,
and can test effectively.

3. Negotiate and understand the MISSIONS of testing in your
project.

4. Make CHOICES about how to test that exploit the GIVENS and
allow you to achieve your MISSIONS.

5. Monitor the status of the project and continue to adjust the plan as
needed to maintain congruence among GIVENS, CHOICES, and
MISSIONS.

Test Process Choices

We testers and test managers don’t often have a lot of control over the context of our work.
Sometimes that’s a problem. A bigger problem would be not having control over the work itself.
When a test process is controlled from outside the test team, it’s likely to be much less efficient and
effective. This model is designed with the assumption that there are three elements over which you
probably have substantial control: test strategy, test logistics, and test products. Test planning is
mainly concerned with designing these elements of test process to work well within the context.

Test strategy is how you cover the product and detect problems. You can’t test everything in every
way, so here’s where you usually have the most difficult choices.

Test logistics is how and when you apply resources to execute the test strategy. This includes how
you coordinate with other people on the project, who is assigned to what tasks, etc.

Test products are the materials and results you produce that are visible to the clients of testing.
These may include test scripts, bug reports, test reports, or test data to name a few.



Designed by James Bach, Satisfice, Inc. v2.311/3/18
http://www.satisfice.com Copyright © 2001-18, Satisfice, Inc.

How To Evolve a
Context-Driven Test Plan

This guide will assist you with your test planning. Remember, the real test plan is the set of ideas that
actually guides your testing. We’ve designed the guide to be helpful whether or not you are writing a test
plan document.

This is not a template. It’s not a format to be “filled out.” It’s a set of ideas meant to jog your thinking, so
you’ll be less likely to forget something important. We use terse language and descriptions that may not be
suited to a novice tester. It’s designed more to support an experienced tester or test lead.

Below are seven task themes. Visit the themes in any order. In fact, jump freely from one to the other. Just
realize that the quality of your test plan is related to how well you’ve performed tasks and considered
issues like the ones documented below. The Status Check sections will help you decide when you have a
good enough plan, but we recommend revisiting and revising your plan (at least in your head) throughout
the project.

1. Monitor major test planning challenges.

Look for risks, roadblocks, or other challenges that will impact the time, effort, or feasibility of planning a practical
and effective test strategy. Get a sense for the overall scope of the planning effort. Monitor these issues
throughout the project.

Status Check

Are any product quality standards especially critical to achieve or difficult to measure?

Is the product especially complex or hard to learn? (...then you will need more time)

Will testers require special training or tools? (...then better go get that soon)

Are you remote from the users of the product? (...then might have to work harder to understand them)
Are you remote from any of your clients? (...then set up more disciplined process of communication)

Is any part of the test platform difficult to obtain or configure? (...then warn your clients about that)
Will you test unintegrated or semi-operable product components? (...then prep tools and environments)
Avre there any particular testability problems? (...then advocate for testability)

Does the project team lack experience with the product design, technology, or user base?

Is any information needed for planning not yet available? (...then warn your clients you need it)

Are you unable to review a version of the product to be tested (even a demo, prototype, or old version)?

Is adequate testing staff difficult to hire or organize? (...then don 't wait long before trying to do that)
Must you adhere to an unfamiliar test methodology? (...then you better study it and see if you can)

Are you being pressured to formalize too soon? (...then push back, because informality comes first)

Avre project plans made without regard to testing needs? (...then warn your clients that will impair testing)
Is the plan subject to lengthy negotiation or approval? (...then start ASAP)

Avre project plans changing frequently? (...then establish a way to find out when they do)

Will the plan be subject to audit? (...then find out what that audit process is and when it happens)

a
a
a
a
a
a
a
a
a
O Does test execution have to start soon? (...then focus on what you really need to get started)
a
a
a
a
a
a
a
a
a
a

Avre your clients unsure of what they want from you? (...then tell them what they should want)

Page 1 of 7



Designed by James Bach, Satisfice, Inc. v2.311/3/18
http://www.satisfice.com Copyright © 2001-18, Satisfice, Inc.

2. Know your mission.

Any or all of the goals below may be part of your testing mission, and some more important than others. Based on
your knowledge of the project, rank these goals. For any that apply, discover any specific success metrics by
which you'll be judged.

Mission Elements to Consider

Find important problems fast.

Perform a comprehensive quality assessment.
Certify product quality against a specific standard.
Minimize testing time or cost.

Maximize testing efficiency.

Advise clients on improving quality or testability.
Advise clients on how to test.

Assure that the test process is fully accountable.
Rigorously follow certain methods or instructions.

coocooOooooOo

Satisfy particular stakeholders.

Possible Work Products

O Brief email outlining your mission.

U One-page test project charter.

U Do you know who your clients are?

U Do the people who matter agree on your mission?

O Is your mission sufficiently clear that you can base your planning on it?

Page 2 of 7

10



Designed by James Bach, Satisfice, Inc. v2.311/3/18
http://www.satisfice.com Copyright © 2001-18, Satisfice, Inc.

3. Know the product.

Get to know the product and the underlying technology. Learn how the product will be used. Steep yourself in it.
As you progress through the project, your testing will become better because you will be more of a product expert.

What to Analyze

Users (who they are and what they do)

Structure (code, files, etc.)

Functions (what the product does)

Data (input, output, states, etc.)

Interfaces (user interfaces, APIs, connections to platform components)
Platforms (external hardware and software)

Operations (how product is used in real life)

oooo0d0ooo

Timing (performance variables, periodic functionalities, race conditions)

Perform survey testing (testing with the primary goal of learning about the product).
Apply the Heuristic Test Strategy Model product elements guidewords.

(W
(]
U Review product and project documentation.
O Interview designers and users.

(W

Compare w/similar products.

Possible Work Products

U  Product coverage outline

U Annotated specifications

O Product bug list

O Project issue list

Do designers approve of the product coverage outline?
Do designers think you understand the product?

Can you visualize the product and predict behavior?
Are you able to produce test data (input and results)?
Can you configure and operate the product?

Do you understand how the product will be used?

Are you aware of gaps or inconsistencies in the design?

o000 0D0DDO

Have you considered tacit specifications as well as explicit?

Page 3 of 7

11



Designed by James Bach, Satisfice, Inc. v2.311/3/18
http://www.satisfice.com Copyright © 2001-18, Satisfice, Inc.

4. Know the risk.

How might this product fail in a way that matters? At first you'll have a general idea, at best. As you progress
through the project, your test strategy, your testing will become better because you'll learn more about the failure
dynamics of the product.

What to Analyze

U Threats (challenging situations and data)
O Vulnerabilities (where it’s likely to fail)

O Failure modes (possible kinds of problems)
O Victim impact (how problems matter)

Ways to Analyze

Perform survey testing or general shallow testing to identify risk hotspots.

Review product against risk heuristics and quality criteria categories.

Review requirements and specifications.

Review actual failures in the lab or in the field.

Review code and architecture to understand failure modes and fault propagation pathways.
Interview designers and users.

CO0O000DO

Use a risk catalog to identify problems you want to specifically test for.

Possible Work Products
O Component/risk matrix (outline of the parts of the product and risk factors associated with them)
L List of risk areas (clusters of related suspected risks)
U List of risk factors (threats and vulnerabilities)
U Risk catalog (outline of all the kinds of problems that typically occur with that technology)
Do the designers and users concur with the risk analysis?
Will you be able to detect all significant kinds of problems, should they occur during testing?
Do you know where to focus testing effort for maximum effectiveness?
Can the designers do anything to make important problems easier to detect, or less likely to occur?

0000

What makes you think your risk analysis is any good? Have a compelling story about that.

Page 4 of 7

12



Designed by James Bach, Satisfice, Inc. v2.311/3/18
http://www.satisfice.com Copyright © 2001-18, Satisfice, Inc.

5. Decide the test strategy.

What can you do to test rapidly and effectively based on the best information you have about the product? Make
the best decisions you can, up front, but let your strategy improve throughout the project.

Consider Techniques From Five Perspectives
Tester-focused techniques.

Coverage-focused techniques (both structural and functional).
Problem-focused techniques.

Activity-focused techniques.

ocoo0ooo

Oracle-focused techniques.

5
<
P
5]
3
D
5

Match techniques to risks and product areas.

Visualize specific and practical techniques.

Diversify your strategy to minimize the chance of missing important problems.
Look for ways automation could allow you to expand your strategy.

ocoooo

Don’t overplan. Testers must stay awake by using their brains.

Possible Work Products

Itemized statement of each test strategy chosen and how it will be applied.
Risk/task matrix.

List of issues or challenges inherent in the chosen strategies.

Advisory of poorly covered parts of the product.

ocoopoo

Test cases (only if required)

tatus Check
Do your clients concur with the test strategy?

|

Is everything in the test strategy necessary?

Can you actually carry out this strategy?

Is the test strategy too generic—could it just as easily apply to any product?

Is there any category of important problem that you know you are not testing for?

00000

Has the strategy made use of available resources and helpers?

Page 5 of 7

13



Designed by James Bach, Satisfice, Inc. v2.311/3/18
http://www.satisfice.com Copyright © 2001-18, Satisfice, Inc.

6. Know the logistics.

How will you implement your strategy? Your test strategy is profoundly affected by logistical constraints or
mandates. Try to negotiate for the resources you need and exploit whatever you have.

Logistical Areas

Making contact with users

Making contact with your clients

Test effort estimation and scheduling

Testability advocacy

Test team staffing (right skills)

Tester training and supervision

Tester task assignments

Product information gathering and management
Project meetings, communication, and coordination
Relations with all other project functions, including development
Test platform acquisition and configuration
Agreements and protocols

Test tools and automation

Stubbing and simulation needs

Test documentation management and maintenance
Build and transmittal protocol

Test cycle administration, especially after changes
Bug reporting system and protocol

Test status reporting protocol

Code freeze and incremental testing

Pressure management in the end game

Sign-off protocol

[N Iy Iy Iy I Ay Iy Ay N Iy By Ay By Oy )y Iy

Evaluation of test effectiveness, including escaped bug analysis

Possible Work Products
Project agreements
Project issues list
Project risk analysis
Responsibility matrix

(I Wy I Wy

Test schedule

Status Check

Do the logistics of the project support the test strategy?
Are there any problems that block testing?
Are the logistics and strategy adaptable in the face of foreseeable problems?

D000

Can you start testing now and sort out the rest of the issues later?

Page 6 of 7



Designed by James Bach, Satisfice, Inc. v2.311/3/18
http://www.satisfice.com Copyright © 2001-18, Satisfice, Inc.

7. Share the plan.

You are not alone. The test process must serve the project. So, involve the project in your test planning process.
You don't have to be grandiose about it. At least chat with key members of the team to get their perspective and
implicit consent to pursue your plan.

Ways to Share

Engage designers and stakeholders in the test planning process.

Actively solicit opinions about the test plan.

Do everything possible to help the developers succeed.

Help the developers understand how what they do impacts testing.

Talk to technical writers and technical support people about sharing quality information.
Get designers and developers to review and approve reference materials.

Record and track agreements.

Get people to review the plan in pieces.

oooo0dooo0ood

Improve reviewability by minimizing unnecessary text in test plan documents.

Goals

L Common understanding of the test process.

U Common commitment to the test process.

U Reasonable participation in the test process.

L Management has reasonable expectations about the test process.

Is the project team paying attention to the test plan?

Does the project team, especially first line management, understand the role of the test team?

Does the project team feel that the test team has the best interests of the project at heart?

Is there an adversarial or constructive relationship between the test team and the rest of the project?

oo00dOo

Does anyone feel that the testers are “off on a tangent” rather than focused on important testing?

Page 7 of 7

15



16



Designed by James Bach Version 6.0
james@satisfice.com 2/8/2024
www.satisfice.com Copyright 1996-2024, Satisfice, Inc17

Heuristic Test Strategy Model

The Heuristic Test Strategy Model is a set of patterns for designing and choosing tests to perform. The
immediate purpose of this model is to remind testers of what to think about during that process. I encourage
testers to customize it to fit their own organizations and contexts.

Project
Environment
Test
Techniques
Quality Product
Criteria Elements

The Testing
and Quality
Story

Project Environment represents a set of context factors that include resources, constraints, and other elements
in the project that may enable or hobble our testing. Sometimes a tester must challenge constraints, and
sometimes accept them.

Product Elements are aspects of the product that you consider testing, including aspects intrinsic to the product
and relationships between the product and things outside it. Software is complex and invisible. Take care to
cover all of it that matters, not just the parts that are easy to see.

Quality Criteria Categories are dimensions in which people determine the value of the product. You can also
think of them as categories of product risk. Quality criteria are subjective and multidimensional and often
hidden or contradictory.

General Test Techniques are heuristics for designing tests. How, where, and when to apply a particular
technique requires an analysis of project environment, product elements, and quality criteria.

The Testing and Quality Story is the result of testing. You can never know the "actual” quality of a software
product— you can’t “verify” quality, as such— but by performing tests, you can make an assessment, and that
takes the form of a story you tell (including bugs, curios, etc.).



General Test Techniques

A test technique is a heuristic for designing tests. There are many interesting techniques. The list includes nine families of
general techniques. By “general technique” we mean that the technique is simple and universal enough to apply to a wide

variety of contexts. Many specific techniques are based on one or more of these families. And an endless variety of specific
test techniques may be constructed by combining one or more general techniques with coverage ideas from the other lists

in this model.

Function Testing

Test what it can do

1.  Identify things that the product can do (functions and sub-
functions).

2. Determine how you’d know if a function was capable of
working.

3.  Testeach function, one at a time.

4.  See that each function does what it’s supposed to do and
not what it isn’t supposed to do.

Domain Testing

Partition the data

1. Look for any data processed by the product. Look at

outputs as well as inputs.

2. Decide which particular data to test with. Consider things
like boundary values, typical values, convenient values,
invalid values, or best representatives.

Consider combinations of data worth testing together.
4.  Consider using inputs that force the whole range of
possible outputs to occur.

w

Stress Testing

Overwhelm the product

1.  Look for sub-systems and functions that are vulnerable to
being overloaded or “broken” in the presence of
challenging data or constrained resources.

2. ldentify data and resources related to those sub-systems
and functions.

3.  Select or generate challenging data, or resource constraint
conditions to test with: e.g,, large or complex data
structures, high loads, long test runs, many test cases, low
memory conditions.

Flow Testing

Do one thing after another
1.  Perform multiple activities connected end-to-end; for
instance, conduct tours through a state model.
2. Don’treset the system between actions.
3. Vary timing and sequencing, and try parallel threads.

Scenario Testing

Test to a compelling story

1.  Begin by thinking about everything going on around the
product.

2. Design tests that involve meaningful and complex
interactions with the product.

3. Agood scenario test is a compelling story of how someone
who matters might do something that matters with the
product.

Claims Testing
Challenge every claim

1.  Identify reference materials that include claims about the
product (tacit or explicit). Consider SLAs, EULAs,
advertisements, specifications, help text, manuals, etc.

2. Analyze individual claims, and clarify vague claims.

3. Testeach claim about the product.

4. Ifyou're testing from an explicit specification, expect it and the
product to be brought into alignment.

User Testing

Involve the users

1.  Identify categories and roles of users.
2. Determine what each category of user will do (use cases), how
they will do it, and what they value.
3. Getreal user data, logs based on user activity, or bring real
users in to test.
4.  Otherwise, systematically simulate a user (be careful—it’s
easy to think you're like a user even when you're not).
5. Powerful user testing is that which involves a variety of users
and user roles, not just one.
Risk Testing
Imagine a problem, then look for it
1. Whatkinds of problems could the product have?
2. Which kinds matter most? Focus on those.
3. How would you detect them if they were there?
4.  Make alist of interesting problems and design tests
specifically to reveal them.
5. It may help to consult experts, design documentation, past bug

reports, or apply risk heuristics.

Tool-Supported Testing

Use tools to make testers more powerful

1.

v

Look for or develop tools that can perform a lot of actions and
check a lot of things.

Consider tools that partially automate test coverage.

Consider tools that partially automate oracles.

Consider automatic change detectors.

Consider automatic test data generators.



Project Environment

Creating and executing tests is the heart of the test project. However, there are many factors in the project environmen
that are critical to your decision about what specific tests to create. In each category, below, consider how that element
may help or hinder your test design process. Try to exploit every resource.

Mission. Your purpose on this project, as understood by you and your customers.

Why are you testing? Are you motivated by a general concern about quality or specific and defined risks?

Do you know who the customers of your work are? Whose opinions matter? Who benefits or suffers from the work you do?
Maybe the people you serve have strong ideas about what tests you should create and run. Find out.

Have you negotiated project conditions that affect your ability to accept your mission?

Information. Information about the product or project that is needed for testing.

Whom can we consult with to learn about this project?

Are there any engineering documents available? User manuals? Web-based materials? Specs? User stories?
Does this product have a history? Old problems that were fixed or deferred? Pattern of customer complaints?
Is your information current? How are you apprised of new or changing information?

Are there any comparable products or projects from which we can glean important information?

Developer Relations. How you get along with the programmers.

Rapport: Have you developed a friendly working relationship with the programmers?

Hubris: Does the development team seem overconfident about any aspect of the product?

Defensiveness: Is there any part of the product the developers seem strangely opposed to having tested?
Feedback loop: Can you communicate quickly, on demand, with the programmers?

Feedback: What do the developers think of your test strategy?

Test Team. Anyone who will perform or support testing.

Do you know who will be testing? Do they have the knowledge and skills they need?

Are there people not on the “test team” that might be able to help? People who've tested similar products before and might
have advice? Writers? Users? Programmers?

Are there particular test techniques that someone on the team has special skill or motivation to perform?

Who is co-located and who is elsewhere? Will time zones be a problem?

Equipment & Tools. Hardware, software, or documents required to administer testing.

Hardware: Do you have all the physical or virtual hardware you need for testing? Do you control it or share it?
Automated Checking: Do you have tools that allow you to control and observe product behavior automatically?
Analytical Tools: Do you have tools to create test data, design scenarios, or to analyze and track test results?
Matrices & Checklists: Are any documents needed to track or record the progress of testing?

Signals: Do you have access to engineering data coming back from the field?

Schedule. The sequence, duration, and synchronization of project events

Test Design: How much time do you have? Are there tests better to create later than sooner?

Test Execution: When will tests be performed? Are some tests performed repeatedly, say, for regression purposes?
Development: When will builds be available for testing, features added, code frozen, etc.?

Documentation: When will the user documentation be available for review?

Test Items. The product to be tested.

Scope: What parts of the product are and are not within the scope of your testing responsibility?

Availability: Do you have the product to test? Do you have test platforms available? Will you test in production?
Interoperable Systems: Are any third-party services required for your product that must be mocked or made available?
Volatility: Is the product constantly changing? How will you find out about changes?

New Stuff: Do you know what has recently been changed or added in the product?

Testability: Is the product functional and reliable enough that you can effectively test it?

Future Releases: What part of your testing, if any, must be designed to apply to future releases of the product?

Deliverables. The observable products of the test project.

Content: What sort of reports will you have to make? Will you share your working notes, or just the end results?
Purpose: Are your deliverables provided as part of the product? Does anyone else have to run your tests?
Standards: s there a particular test documentation standard you're supposed to follow?

Media: How will you record and communicate your reports?

-3-



Product Elements

Ultimately a product is an experience or solution provided to a customer. Products have many dimensions. Each category,20
listed below, represents an important and unique element to be considered in the test strategy.

Structure. Everything that comprises the physical product.

. Code: the code structures that comprise the product, from executables to individual routines.

. Hardware: any hardware component that is integral to the product.

e  Service: any server or process running independently of others that may comprise the product.

. Non-executable files: any files other than multimedia or programs, like text files, sample data, or help files.

. Collateral: anything beyond that is also part of the product, such as paper documents, web pages, packaging, license agreements, etc.

Function. Everything that the product does.

. Multi-user/Social: any function designed to facilitate interaction among people or to allow concurrent access to the same resources.

. Calculation: any arithmetic function or arithmetic operations embedded in other functions.

. Time-related: time-out settings; periodic events; time zones; business holidays; terms and warranty periods; chronograph functions.

. Security-related: rights of each class of user; protection of data; encryption; front end vs. back end protections; vulnerabilities in sub-systems.
. Transformations: functions that modify or transform something (e.g. setting fonts, inserting clip art, withdrawing money from account).

. Startup/Shutdown: each method and interface for invocation and initialization as well as exiting the product.

. Multimedia: sounds, bitmaps, videos, or any graphical display embedded in the product.

. Error Handling: any functions that detect and recover from errors, including all error messages.

. Interactions: any interactions between functions within the product.

. Testability: any functions provided to help test the product, such as diagnostics, log files, asserts, test menus, etc.

Data. Everything that the product processes and produces.

. Input/Output: any data that is processed by the product, and any data that results from that processing.

. Preset: any data that is supplied as part of the product, or otherwise built into it, such as prefabricated databases, default values, etc.

. Persistent: any data that is expected to persist over multiple operations. This includes modes or states of the product, such as options settings,
view modes, contents of documents, etc.

. Interdependent/Interacting: any data that influences or is influenced by the state of other data; or jointly influences an output.

. Sequences/Combinations: any ordering or permutation of data, e.g. word order, sorted vs. unsorted data, order of tests.

. Cardinality: numbers of objects or fields may vary (e.g. zero, one, many, max, open limit). Some may have to be unique (e.g. database keys).

. Big/Little: variations in the size and aggregation of data.

. Invalid/Noise: any data or state that is invalid, corrupted, or produced in an uncontrolled or incorrect fashion.

. Lifecycle: transformations over the lifetime of a data entity as it is created, accessed, modified, and deleted.

Interfaces. Every conduit by which the product is accessed or expressed.

. User Interfaces: any element that mediates the exchange of data with the user (e.g. displays, buttons, fields, whether physical or virtual).
. System Interfaces: any interface with something other than a user, such as engineering logs, other programs, hard disk, network, etc.

e API/SDK: any programmatic interfaces or tools intended to allow the development of new applications using this product.

. Import/export: any functions that package data for use by a different product, or interpret data from a different product.

Platform. Everything on which the product depends (and that is outside your project).

. External Hardware: hardware components and configurations that are not part of the shipping product, but are required (or optional) for the
product to work: systems, servers, memory, keyboards, the Cloud.

. External Software: software components and configurations that are not a part of the shipping product, but are required (or optional) for the
product to work: operating systems, concurrently executing applications, drivers, fonts, etc.

. Embedded Components: libraries and other components that are embedded in your product but are produced outside your project.

. Product Footprint: The resources in the environment that are used, reserved, or consumed by the product (memory, filehandles, etc.)

Operations. How the product will be used.

. Users: the attributes of the various kinds of users.

. Environment: the physical environment in which the product operates, including such elements as noise, light, and distractions.
. Common Use: patterns and sequences of input that the product will typically encounter. This varies by user.

. Disfavored Use: patterns of input produced by ignorant, mistaken, careless or malicious use.

e Extreme Use: challenging patterns and sequences of input that are consistent with the intended use of the product.

Time. Any relationship between the product and time.

. Input/Output: when input is provided, when output created, and any timing relationships (delays, intervals, etc.) among them.
. Fast/Slow: testing with “fast” or “slow” input; fastest and slowest; combinations of fast and slow.

. Changing Rates: speeding up and slowing down (spikes, bursts, hangs, bottlenecks, interruptions).

. Concurrency: more than one thing happening at once (multi-user, time-sharing, threads, and semaphores, shared data).

-4-



Quality Criteria Categories

A quality criterion is some requirement that defines what the product should be. By thinking about different kinds of
criteria, you will be better able to plan tests that discover important problems fast. Each of the items on this listcanbe 21
thought of as a potential risk area. For each item below, determine if it is important to your project, then think how you
would recognize if the product worked well or poorly in that regard.

Capability. Can it perform the required functions?

e Sufficiency: the product possesses all the capabilities necessary to serve its purpose.
e Correctness: it is possible for the product to function as intended and produce acceptable output.

Reliability. Will it work well and resist failure in all required situations?

e Robustness: the product continues to function over time without degradation, under reasonable conditions.

e Error handling: the product resists failure in the case of bad data, is graceful when it fails, and recovers readily.
e Data Integrity: the data in the system is protected from loss or corruption.

e  Safety: the product will not fail in such a way as to harm life or property.

Usability. How easy is it for a real user to use the product?

e  Learnability: the operation of the product can be rapidly mastered by the intended user.
e Operability: the product can be operated with minimum effort and fuss.
e Accessibility: the product meets relevant accessibility standards and works with O/S accessibility features.

Charisma. How appealing is the product?

e Aesthetics: the product appeals to the senses.

e Uniqueness: the product is new or special in some way.

e Entrancement: users get hooked, have fun, are fully engaged when using the product.
e Image: the product projects the desired impression of quality.

Security. How well is the product protected against unauthorized use or intrusion?

e Authentication: the ways in which the system verifies that a user is who he says he is.

e Authorization: the rights that are granted to authenticated users at varying privilege levels.

e  Privacy: the ways in which customer or employee data is protected from unauthorized people.

e Security holes: the ways in which the system cannot enforce security (e.g. social engineering vulnerabilities)

Scalability. How well does the deployment of the product scale up or down?
Compatibility. How well does it work with external components & configurations?

e Application Compatibility: the product works in conjunction with other software products.

e Operating System Compatibility: the product works with a particular operating system.

e Hardware Compatibility: the product works with particular hardware components and configurations.
e Backward Compatibility: the products works with earlier versions of itself.

e Product Footprint: the product doesn’t unnecessarily hog memory, storage, or other system resources.

Performance. How speedy and responsive is it?
Installability. How easily can it be installed onto its target platform(s)?

e  System requirements: Does the product recognize if some necessary component is missing or insufficient?

e Configuration: What parts of the system are affected by installation? Where are files and resources stored?

e Uninstallation: When the product is uninstalled, is it removed cleanly?

e  Upgrades/patches: Can new modules or versions be added easily? Do they respect the existing configuration?
e Administration: Is installation a process that is handled by special personnel, or on a special schedule?

Development. How well can we create, test, and modify it?

e Supportability: How economical will it be to provide support to users of the product?
e Testability: How effectively can the product be tested?

e Maintainability: How economical is it to build, fix or enhance the product?

e Portability: How economical will it be to port or reuse the technology elsewhere?

e Localizability: How economical will it be to adapt the product for other places?

-5-



22



Elements of Excellent Testing

Created by James Bach, Jonathan Bach, and Michael Bolton v4.2 Copyright © 2005-2022, Satisfice, Inc.

Science is testing; and testing is science. The world of commercial product testing differs from the world of science
mainly in its object, not its subject or its process: we who test products apply ourselves to the study of an ephemeral
human contrivance rather than the natural world. This is a human learning process.

Story-Telling ",
- What is the product status? '/:',)

- What are we doing to test? e
- How good is this testing?

test
strategy

Testing, like science, is an exploratory
process that also makes use of scripted
elements. The “gears” in the diagram to

IENATY "—"1,/./, | AN ’ ) A -‘_‘-"|_-‘;_,,‘:/.‘ >
" Knowledge 7. Analysis <" Encountering the left represent activities that evolve
S < —y > the Product over time, feeding each other.
C - Product Model/Story - Coverage - t“*w
- Team Knowledge . o1} _ 1 es -
project Gt Orles onsrans 2 onnure patiors The rectangles are artifacts that result
S -Donsln Eurinige “Value/Cost T -Observe m from those activities.
<, e :}LCE: 'I(:I;JWE 8¢ - Bugs/Curios/Issues - Evaluate test
B e - Testability data At the center, analysis drives the whole

General Knowledge test

process. The four connection points to
analysis are worth examining closer.

o g
_5° Other People "<
) - Expertise =l
- Commitment
-~ - Preparation =4

- Availability ]

- Ideas /Biases

- Experiences
W\}.-) - Relationships

A e
VAV VAN AT

Learning: The connections between
analysis and knowledge might be called the
learning loop. In this interaction the tester is
reviewing and thinking about, and applying
what he knows.

Testing: The connection between analysis

and experiment might be called the testing

loop (in the sense of performing tests). It is Self-Management
dominated by questions about the status of

the product. It may involve algorithmic

processes such as automated output : :
checking. Learning Testing

Collaboration: The connections between

analysis and other people might be called

the collaboration loop. Testing is always a Collaboration
social process to some degree, and group

testing can be very energizing.

Self-management: The connection
between analysis and the testing story is
self-management, by which the whole
process is regulated. Self-management is
driven by stories we tell ourselves.

23



Evolving Work Products

As testing proceeds, look for any of the following to be created, refined, and possibly documented during the process.

Test Ideas. Any idea or part of an idea, written or unwritten, that may guide the performance of a
test or check.

Output Checks. Mechanized or mechanizable processes for gathering product observations and
evaluating them. A test is always human-guided, whereas a check, by definition, can be completely
automated. A test often includes one or more checks, but a check cannot include a test.

Testability Ideas. How can the product be made easier to test?

Test Results. We may need to maintain or update test results as a baseline or historical record.

Bug Reports. Reports regarding anything about the product that threatens its value.

Issue Reports. Reports regarding anything about the project that threatens its value.

Test Conditions (Product Coverage Outline). A test condition is anything about the product
we might want to examine with a test. A product coverage outline is an outline, list or table of
interesting test conditions.

Product Risks. Any potential areas of bugginess or types of bug.

Test Data. Any data available for use in testing.

Test Tools. Any tools acquired or developed to aid testing (includes automated output checks).

Test Strategy. The set of ideas that guide our test design.

Test Infrastructure and Lab Procedures. General practices, protocols, controls, and systems
that provide a basis for excellent testing.

Test Estimation. Ideas about what we need and how much time we need and what obstacles
might be in our way.

Testing Story. What we know about our testing, so far.

Product Story. What we know about the status of the product, so far.

Test Process Assessment. Our own assessment of the quality of our test process.

Tester and Team. The tester and the team evolves over the course of the project.

Technical and Domain Knowledge. Our knowledge about how the product works and how it is
used.




Testing Skills and Tactics

These are the skills (or tactics that involve skill) needed for professional and cost effective product testing. Each is
distinctly observable and learnable, and each is necessary for excellent exploratory work.

Self-Management Skills and Tactics

Chartering your work. Making decisions about what you will work on and how you will work. Deciding
the testing story you want to manifest; knowing your client’s needs, the problems you must solve, and
assuring that your work is on target.

Establishing procedures and protocols. Designing ways of working that allow you to manage your
study productively. This also means becoming aware of critical patterns, habits, and behaviors that may be
intuitive and bringing them under control.

Establishing the conditions you need to succeed. Wherever feasible and to the extent feasible,
establish control over the surrounding environment such that your tests and observations will not be disturbed
by extraneous and uncontrolled factors.

Self-care. Monitoring your emotional, physical, and mental states as they influence your testing; taking
effective action to manage your energy and maintain a positive outlook; self-forgiveness.

Self-criticism. Finding problems in your work and correcting them; awareness and acknowledgement of
your strengths and weaknesses as a tester.

Test status evaluation. Maintaining an awareness of problems, obstacles, limitations and biases in your
testing; understanding the cost vs. value of the work; constructing the testing story.

Ethics. Understanding your ethical code and fulfilling your responsibilities under it as you work.

Branching your work and backtracking. Allowing yourself to be productively distracted from a course
of action to explore an unanticipated new idea; identifying opportunities and pursuing them without losing
track of your process.

Focusing your work. Isolating and controlling factors to be studied; repeating experiments; limiting
change; precise observation; defining and documenting procedures; optimizing effort; using focusing
heuristics.

De-focusing your work. Expanding the scope of your study; diversifying your work; changing many
factors at once; broad observation; trying new procedures; using defocusing heuristics.

Alternating activities to improve productivity. Switching among complementary activities or
perspectives to create or relieve productive tension and make faster progress. See Exploratory Testing
Polarities.

Maintaining useful and concise records. Preserving information about your process, progress, and
findings.

Knowing when to stop. Selecting and applying stopping heuristics to determine when you have achieved
good enough progress and results, or when your exploration is no longer worthwhile.

Developing and maintaining credibility. No one will listen to you if they think what you say is not
interesting or important. Remember, a tester has very little visible work, so your reputation is paramount.

25



Collaboration Skills and Tactics

Getting to know people. Meeting and learning about the people around you who might be helpful, or
whom you might help; developing a collegial network within your project and beyond.

Conversation. Talking through and elaborating ideas with other people.

Serving other testers. Performing services that support other testers on their own terms.

Guiding other testers. Supervising testers who support your explorations; coaching testers.

Asking for help. Articulating your needs; negotiating for assistance.

Role visiting. Where feasible and applicable, spending time performing non-testing roles that may give you
perspective or practice that makes you a better tester.

Telling the story of your testing. Making a credible, professional report of your work to your clients in
oral and written form that explains and justifies what you did.

Telling the product story. Making a credible, relevant account of the status of the product you are
studying, including bugs found. This is the ultimate goal for most test projects.

Learning Skills and Tactics

Discovering and developing resources. Obtaining information or facilities to support your effort.
Exploring those resources.

Using the Web. Of course, there are many ways to perform research on the Internet. But, acquiring the
technical information you need often begins with Google or Wikipedia.

Considering history. Reviewing what’s been done before and mining that resource for better ideas.

Reading and analyzing documents. Reading carefully and analyzing the logic and ideas within
documents that pertain to your subject.

Interviewing. ldentifying missing information, conceiving of questions, and asking questions in a way that
elicits the information you seek.

Pursuing an inquiry. A line of inquiry is a structure that organizes reading, questioning, conversation,
testing, or any other information gathering tactic. It is investigation oriented around a specific goal. Many
lines of inquiry may be served during exploration. This is, in a sense, the opposite of practicing curiosity.

Indulging curiosity. Curiosity is investigation oriented around this general goal: to learn something that
might be useful, at some later time. This is, in a sense, the opposite of pursuing a line of inquiry.

Generating and elaborating a requisite variety of ideas. Working quickly in a manner good enough
for the circumstances. Revisiting the solution later to extend, refine, refactor or correct it.

Overproducing ideas for better selection. Producing many different speculative ideas and making
speculative experiments, more than you can elaborate upon in the time you have. Examples are
brainstorming, trial and error, genetic algorithms, free market dynamics.

Abandoning ideas for faster progress. Letting go of some ideas in order to focus and make progress
with other ones.

Recovering or reusing ideas for better economy. Revisiting your old ideas, models, questions or
conjectures; or discovering them already made by someone else.




Test Performance Skills and Tactics

Encountering the product. Making and managing contact with the subject of your study; for technology,
configuring and operating it so that it demonstrates what it can do.

Sensemaking. Determining the meaning and significance of what you encounter; considering multiple,
incompatible explanations that account for the same facts; inference to the best explanation.

Modeling and factoring. Modeling means composing, decomposing, describing, and working with mental
representations of the things you are exploring; factoring means identifying relevant dimensions, variables,
and dynamics that should be tested. There are lots of formal modeling methods, as well.

Analyzing product risk. Using experiential data, conversation, and heuristics, identify suspected product
risks that deserve to be investigated with testing.

Experiment design. As you develop ideas about what’s going on, creating and performing tests designed
to disconfirm those beliefs, rather than repeating the tests that merely confirm them.

Literate observation. Making relevant observations guided by your various mental models; gathering
different kinds of empirical data, or data about different aspects of the object; establishing procedures for
rigorous observations; noticing strange things; noticing what you are not seeing.

Detecting potential problems. Designing and applying oracles to detect behaviors and attributes that
may be trouble.

Assessing validity. Analyzing, monitoring, and correcting for factors that may distort or invalidate the
tests.

Notetaking. Recording observations, ideas, and progress as you test; recording useful information without
unduly disturbing the test process itself.

Data wrangling. Synthesizing, modifying, moving, and reformatting test data.

Bug reporting and advocacy. Explaining problems in a compelling and respectful way.

Applying tools. Enabling new kinds of work or improving existing work by developing and deploying
tools.

Testability advocacy. Analyzing and negotiating for the conditions that make testing easier and more
effective.

Protocol design. Creating and following procedures and practices that increase the reliability of the test
process.

Lab management. Creating and maintaining the systems, tools, databases, and spaces that you need to test
well.

27



Knowledge that Helps

In addition to the skills and tactics of testing, there’s lots of things we might need to know.

Product Knowledge. What does your product do and how does it work?

Technology Knowledge. What technology is your product built from? What other technologies can help
you test it?

Project Knowledge. What’s going on in your project? What’s the schedule? Who is working on it?

Domain Knowledge. Who are the users? How do they think? What sort of process does your product
support?

General systems knowledge. This refers to the whole field of general systems theory and systems
thinking. In short, it consists of the heuristics and know-how about how dynamic systems behave.

Tool Knowledge. Physical or software-based tools that can help testing. This does not only mean tools that
are called “test tools” but rather ANY tool that may help ANY aspect of the test process.

Test Technique Knowledge. There are many kinds of testing; many specific testing heuristics you might
use.

Resource Knowledge. In addition to things that you think of as tools, you need to be aware of any
resource (i.e. facility, material, or service) that is available to help you get the job done.

People Knowledge. Who can help you? What skills do they have that you need? How do you approach
them? How specifically might they contribute to the test project?

Role Knowledge. What do the other people do who make the project work? How does their work impact
yours? How might knowing more about their roles help you do your job better? How do you serve them as a
tester?

History Knowledge. What is the history of this project? This product line? The market? This company?
What trouble has happened in the past that we don’t want repeated?

Business and Market Knowledge. Who are your competitors? What are those competing products? Are
there similar or complementary products as well? How does quality affect your bottom line?

Helpful Skills Some Testers Have

In addition to the defining skills of testing, there are other skills and knowledge areas that testers may have.

Coding SkKill. In some companies, coding skills are a requirement. In general, the ability to build your own
tools brings great power to testing. However, people with coding skills may also think too much like coders
and lose empathy for users.

Design Skill. Product design, and especially user interface design, can help sharpen your bug reports and
improve your bug detection ability.

Social Science Skills. The social sciences are about studying extremely complex, socially situated
phenomena. The analytical methods and standards of social science helps testers better understand the limits
of software testing and to better study and improve testing processes.

Specification Writing Skills. Sometimes it helps for testers to help write specifications, or to suggest
rewrites. Writing a spec is one great way of preparing to design tests for that product.

Mathematics and Logic Skills. Statistics, combinatorics, and formal logic are often useful to design deep
tests and characterize test coverage.

Cognitive Science Skills. If you understand the patterns and limitations of human perception, you can
better appreciate how to avoid common pitfalls of self-deception, and to design test procedures that are more
reliable.




Exploratory Polarities

To develop ideas or search a complex space quickly yet thoroughly, not only must you look at the world from many
points of view and perform many kinds of activities (which may be polar opposites), but your mind may get sharper
from the very act of switching from one kind of activity to another. Here is a partial list of polarities:

Warming up vs. cruising vs. cooling down

Doing vs. describing

Doing vs. thinking

Deliberate vs. spontaneous

Data gathering vs. data analysis

Working with the product vs. reading about the product

Working with the product vs. working with the developer

Training (or learning) vs. performing

Product focus vs. project focus

Solo work vs. team effort

Your ideas vs. other peoples’ ideas

Lab conditions vs. field conditions

Current version vs. old versions

Feature vs. feature

Requirement vs. requirement

Coverage vs. oracles

Testing vs. touring

Individual tests vs. general lab procedures and infrastructure

Testing vs. resting

Playful vs. serious

29



Test Strategy

This is a compressed version of the Satisfice Heuristic Test Strategy model. It’s a set of
considerations designed to help you test robustly or evaluate someone else’s testing.

Project Environment

coooocoo

Mission. The problems you are commissioned to solve for your customer.
Information. Information about the product or project that is needed for testing.
Developer Relations. How you get along with the programmers.

Test Team. Anyone who will perform or support testing.

Equipment & Tools. Hardware, software, or documents required to administer testing.
Schedules. The sequence, duration, and synchronization of project events.

Test Items. The product to be tested.

Deliverables. The observable products of the test project.

Product Elements

ocodoo0oC

Structure. Everything that comprises the physical product.

Functions. Everything that the product does.

Data. Everything that the product processes.

Interfaces. Every conduit by which the product is accessed or expressed.

Platform. Everything on which the product depends (and that is outside your project).
Operations. How the product will be used.

Time. Any relationship between the product and time.

Quality Criteria Categories

coooco0ooo0oo

Capability. Can it perform the required functions?

Reliability. Will it work well and resist failure in all required situations?

Usability. How easy is it for a real user to use the product?

Charisma. How appealing is the product?

Security. How well is the product protected against unauthorized use or intrusion?
Scalability. How well does the deployment of the product scale up or down?
Compatibility. How well does it work with external components & configurations?
Performance. How speedy and responsive is it?

Installability. How easily can it be installed onto it target platform?

Development. How well can we create, test, and modify it?

General Test Techniques

oo

Function Testing. Test what it can do.

Domain Testing. Divide and conquer the data.

Stress Testing. Overwhelm the product.

Flow Testing. Do one thing after another.

Scenario Testing. Test to a compelling story.

Claims Testing. Verify every claim.

User Testing. Involve the users.

Risk Testing. Imagine a problem, then find it.

Automatic Checking. Write a program to generate and run a zillion checks.

30



The Role/Actor Heuristic (v1.1)

Dimensions of Role

Dimension

Scope (what the role covers)
. Responsibilities
e  What depends on it
e  What it depends on

Typical Problems

Role too big for actor; tasks get lost
Big role shared by many actors who
fight each other

Typical Remedies
Bring more actors in to share role
Break up big role into smaller roles
Create manager role

Power (what the role influences)
. Authority/Sponsorship
. What roles control it
. What roles it controls

Powerful role leaves others without
enough power

Weak role can’t get what it needs
Weak role controlled by strong role
that doesn’t understand it

Break up big role into smaller roles
Redistribute power

Attach weak role to stronger roles
Strengthen role via stronger actor
Educate controlling roles

Create manager role

Value (what the role does for people)
. Specific problems solved

Role is not important enough; wastes
time and effort

Ritualize or eliminate role
Increase power of role

. Necessity to organization e Role creates too much trouble Get better actors
. Desirability to others e Role is unpopular and is undermined Use “role model” as actor
. Prestige for actor e Role is thankless and no one wants it
e New problems created ¢ Role ruined by bad actors
Cost (what the role takes from people) e Role is too expensive Eliminate role in order to hide cost
° Cost of the actor, equipment, and e Role makes costs uncomfortably public Hire highly skilled actors
materials o Existence of a role causes others to Hire extremely inexpensive actors
. Cost to accommodate the role “leave it to the expert” and lose skill. Promote the value of the role to show
. Cost due to other roles becoming e Necessity to accommodate the role that costs are justified
complacent disrupts other roles
Requirements (what role/actor needs) e Requirements are too hard to fulfill Make do with less and communicate
. Environment & tools e Qualified actors are too hard to recruit impact to sponsor
. Skills & knowledge e Weakrole can’t get what it needs Offer training and coaching
. Motivation Increase prestige of role
. Outside support Ritualize or eliminate role
Openness (how actors relate to it) e Role is highly territorial Ritualize or eliminate role
. Ownership & commitment e Role is easily disrupted by helpers Offer training and coaching
e Casual shareability e Role is difficult to adopt Strengthen role
. Informality e Role is difficult to let go of Make strong agreements with actors
e Interruptability ¢ Role is mysterious and opaque Close the role to outsiders
e Simplicity e Role too reliant on specific actors Formalize to improve legibility
. Legibility e Role is a tragic commons

Presence (when & where it operates)
. Persistence
. Responsiveness
. Disruptiveness

Response is too slow

When role goes away and later comes
back, people forget many details

Role slows down other roles

Add more actors to speed it up
Good documentation to preserve
history

Ritualize or eliminate the role

Expectations of Actors

Expectation

Commitment (acceptance of duty)
. Investment of energy
. Accountability

Typical Problems
Conflict of commitment between projects
It may not be clear who to blame
There may be many causes for a problem

Typical Remedies
Do fewer projects
Persuade people to commit
Management must watch and listen

Competence (ability to perform)
. Study and practice
. Self-evaluation

No training available
Training is actively harmful
Dunning-Krueger syndrome

On-the-job coaching
Personal ambition
Fake it and hope no one fires you

Readiness (operational status)
. Anticipating events
e  Adapting to new conditions
. Maintaining efficiency
. Troubleshooting

Chronically unanticipated obstacles
Black swan obstacle
Another role spoils your plans

Hire a competent actor

Use a checklist or guideword
heuristics

Readiness review

Increase power of role

Coordination (relating to other roles)
Mission negotiation

Resource negotiation

Helping and accepting help
Respecting agreements

Failover strategy

Status reporting

Delivery

Goal displacement

Forgotten agreements

Partial delivery

Fail to justify need for resources
Poor credibility in negotiation

Good meetings

Use a checklist or guideword
heuristics

Use a map of dependencies
Better sponsorship

Increase power of role

31



32



Heuristics of Software Testability

Version 2.6, 2024, by James Bach, Satisfice, Inc.

The practical testability of a product is how easy it is to test” by a particular tester and test process, in a given con-
textt. Practical testability is a function of five other “testabilities:” project-related testability, value-related testability,
subjective testability, intrinsic testability, and epistemic testability (also known as the “risk gap”). Just as in the case
for quality in general, testability is a plastic and multi-dimensional concept that cannot be usefully expressed in any
single metric. But we can identify testability problems and heuristics for improving testability in general.

Epistemic Testability

Testability created by our knowledge
of the status of the product under test
relative to what we need to know.

Example: "Life-critical software is harder to test."

Project-Related Testability Value-Related Testability

-
Testability created by the physical, social, P = [ :l 1ICa I Testability created by
or informational conditions under which we fest. ] the quality standard and our knowledge of it
Ll -
Example: "When the developers discuss upcoming Testa bl I Ity Example: "Testing is easier now that I work

changes with me, I can target my testing better." with the people who are going to use this system."

Subjective Testability /A \ Intrinsic Testability

Testability created by the nature Testability created by the nature

of the tester or the test process. the product itself.
Example: "Ever since Ilearned Javascript, Example: "The new function-level log file
testing this web application has been easier." records everything I do when Itest."

Interesting Testability Dynamics

Changing the product or raising the quality standard reduces epistemic testability. The difference between what we
know and what we need to know is why we test in the first place. A product is easier to test if we already know a lot
about its quality or if the quality standard is low, because there isn’t much left for testing to do. That's epistemic test-
ability. Therefore, product that changes a lot or in which we can’t tolerate trouble is automatically less testable.

Improving any other aspect of testability increases the rate of improvement of epistemic testability. Efforts made to
improve any other aspect of testability, by definition, increases the rate at which the gap between what we know and
what we need to know closes.

Improving test strategy might decrease subjective testability or vice versa. This may happen when we realize that our
existing way of testing, although easy to perform, is not working. A better test strategy, however, may require much
more effort and skill. (Ignorance was bliss.) Beware that the opposite may also occur. We might make a change (add-
ing a tool for instance) that makes testing seem easier, when in fact the testing is worse. (Bliss may be ignorant.)

* Testing is evaluating a product by learning about it through experiencing, exploring, and experimenting.
T Context is all of the factors a situation that should be considered when solving a situated problem.



Increasing intrinsic testability might decrease project-related testability. This may happen if redesigning a product to
make it more testable also introduces many new bugs. Or it may happen because the developers spend longer stabi-
lizing the product before letting independent testers see it. Agile development done well helps minimize this prob-
lem.

Increasing value-related testability might decrease project testability. You can dramatically increase value-related
testability by embedding yourself with real users in the field, and even participating in their work. You will be testing
under the most realistic possible conditions. However, this can be difficult, expensive, slow, and lead to accidental
retention or mishandling confidential personal data as you test, which hurts project-related testability.

Increasing practical testability also improves development and maintenance. If a product is easier to test then it is also
easier to support, debug, and evolve. Observability and controllability, for instance, is a tide that floats all boats.

The tester must ask for testability. We cannot expect any non-tester to seriously consider testability. It's nice when
they do, but don’t count on it. An excellent tester learns to spot testability issues and resolve them with the team.

Guidewords for Analyzing Testability

Epistemic Testability

e  Prior Knowledge of Quality. If we already know a lot about a product, we don’t need to do as much testing.

e Tolerance for Failure. The less quality required, or the more risk that can be taken, the less testing is needed.

Project-Related Testability

e Supportive Culture. Testers are highly sensitive to intimidation or disrespect. No one wants to feel like a
troublemaker or outsider. Protect the independence and purpose of testers if you want their best work.

e Developer Availabilty. The ability to speak with and perhaps influence developers/designers/managers
makes a nurturing environment for testing.

e Change Control. Frequent and disruptive change requires retesting and invalidates our existing product
knowledge. Change control generally improves testability, but can also hurt it if we aren’t allowed to update
our test environments, tools, and data. Change control may occur on a local or corporate level.

¢ Information Availability. We get all information we want or need to test well.
e Tool Availability. We are provided all tools we want or need to test well.
e Test Item Availability. We can access and interact with all relevant versions of the product.

e Sandboxing. We are free to do any testing worth doing (perhaps including mutation or destructive testing),
without fear of disrupting users, other testers, or the development process.

e Environmental Controllability. We can control all potentially relevant experimental variables in the environ-
ment surrounding our tests.

e Time. Having too little time destroys testability. We require time to think, prepare, and cope with surprises.

e Leanness. Complexity and magnitude of work products, accumulated over time, must be navigated or main-
tained to get the testing done. Also, complicated bureaucratic processes reduce time available for tsting.
Avoid technical debt and administrative overhead.

Value-Related Testability

e Oracle Availability. We need ways to detect each kind of problem. A well-written specification is one example
of such an oracle, but there are lots of other kinds of oracles (including people and tools).

e  Oracle Authority. We benefit from oracles that identify problems that will be considered important.

e Oracle Reliability. We benefit from oracles that can be trusted to work over time and in many conditions.

e  Oracle Precision. We benefit from oracles that facilitate identification of specific problems.

e Oracle Inexpensiveness. We benefit from oracles that don’t require much cost or effort to acquire or operate.
e  User Stability & Unity. The less users change and the more harmony among them, the easier the testing.

e  User Familiarity. The more we understand and identify with users, the easier it is to test for them.

34



User Availability. The more we can talk to and observe users, the easier it is to test for them.
User Data Availability. The more access we have to natural data, the easier it is to test.
User Environment Availability. Access to natural usage environments improves testing.

User Environment Stability & Unity. The less user environments and platforms change and the fewer of them
there are, the easier it is to test.

Subjective Testability

Engagement. A bored or distressed tester is a poor tester. A good tester is intellectually and emotionally en-
gaged in the work; confident of finding any problems that may exist.

Involvement. Testing is easier when a tester is closer to the development process, communicating and col-
laborating well with the rest of the team. When testers are held away from development, test efficiency suf-
fers terribly.

Product Knowledge. Knowing a lot about the product, including how it works internally, profoundly im-
proves our ability to test it. If we don't know about the product, testing with an exploratory approach helps
us to learn rapidly.

Technical Knowledge. Ability to program, knowledge of underlying technology and applicable tools, and an
understanding of the dynamics of software development generally, though not in every sense, makes testing
easier for us.

Domain Knowledge. The more we know about the users and their problems, the better we can test.

Testing Skill. Our ability to test in general obviously makes testing easier. Relevant aspects of testing skill
include experiment design, modeling, product element factoring, critical thinking, and test framing.

Test Strategy. A well-designed test strategy may profoundly reduce the cost and effort of testing.

Supporting Tester Availability. A “supporting tester” is anyone who is not a regular tester and who is not re-
sponsible for the testing, yet is available to help test the product. Developers can be good supporting testers.

Intrinsic Testability

Observability. To test we must be able to see the product. Ideally we want a completely transparent product,
where every fact about its states and behavior, including the history of those facts is readily available to us.

Controllability. To test, we must be able to visit the behavior of the product. Ideally we can provide any pos-
sible input and invoke any possible state, combination of states, or sequence of states on demand, easily and
immediately.

Algorithmic Simplicity. To test, we must be able to visit and assess the relationships between inputs and out-
puts. The more complex and sensitive the behavior of the product, the more we will need to look at.

Explainability. To test, we must understand the design of the product as much as we can. A product that behaves in
a manner that is explainable to outsiders is going to be easier to test. “Explainability” is also a hot topic in Al

Unbugginess. Bugs slow down testing because we must stop and report them, or work around them, or in the
case of blocking bugs, wait until they get fixed. It’s easiest to test when there are no bugs.

Smallness. The less there is of a product, the less we have to look at and the less chance of bugs due to inter-
actions among product components.

Decomposability. When different parts of a product can be separated from each other, we have an easier
time focusing our testing, investigating bugs, and retesting after changes.
Similarity (to known and trusted technology). The more a product is like other products we already know the

easier it is to test it. If the product shares substantial code with a trusted product, or is based on a trusted
framework, that’s especially good.

35



36



Risk Analysis Heuristics (for Digital Products)

By James Bach and Michael Bolton v.2.1
Copyright © Satisfice, Inc. 2000-2015

This is a set of guideword heuristics for use in analyzing product risks for digital products, mainly
software. “Guidewords” are words or phrases that help focus your attention on potentially
important factors. Guidewords are not mutually exclusive—they interact and overlap to some
degree. But that’s okay. In heuristic risk analysis we do not use mathematics to calculate risk,
however if many of these guidewords seems to apply to a particular component of your product,
you will probably consider that part more likely to harbor serious bugs, and more worth testing.

Project Factors

Things going on in projects, among people, may lead to bugs.

Learning Curve: When developers are new to a tool, technology, or solution domain, they are likely to
make mistakes. Many of those mistakes they will be unable to detect.

Poor Control: Code and other artifacts may not be under sufficient scrutiny or change control, allowing
mistakes to be made and to persist. Also people may try to subvert weak controls when they perceive
themselves to be under time pressure.

Rushed Work: The amount of work exceeds the time available to do it comfortably. Corners are likely to
be cut; details are likely to be forgotten.

Fatigue: Programmers and other members of the development team are more likely to make mistakes
when they're physically tired or even just bored.

Overfamiliarity: When people are immersed in a project or a community for an extended time, they
may become blind to patterns of risks or problems that are easy for an outsider to see.

Distributed Team: When people are working remotely from each other, communication may become
strained and difficult, simple collaborations become expensive, the conditions for the exchange of tacit
knowledge are inhibited.

Third-party Contributions: Any part of a product contributed by a third-party vendor may contain
hidden features and bugs, and the developers may otherwise not fully understand it.

Bad Tools: The project team may be saddled with tools that interfere with or constrain their work; or
that may introduce bugs directly into their work.

Expense of Fixes: Some components or type of bugs may be especially expensive to fix, or take a long
time to fix (platform bugs are typically like this). In that case, you may need to focus on finding those
bugs especially soon.

Not Yet Tested: Any part of the product that hasn't yet been tested is obviously likely to have fresh bugs
in it, compared to things that have been tested. Therefore, for instance, it may be better to focus on
parts of the product that have not been unit tested.

37



Technology Factors

The structure and dynamics of technology itself may give rise to bugs.

New Technology: Over time, the risks associated with any new kind of technology will become
apparent, so if your product uses the latest whizzy concept, it is more likely to have important and
unknown bugs in it.

New Code: The newer the code you are testing, the more likely it is to have unknown problems.

Old Code: A product that has been around for a while may contain code that is unsuited to its current
context, difficult to understand, or hard to modify.

Changed Code: Any recently changed code is more likely to have unknown problems.

Brittle Code: Some code may be written in a way that makes it difficult to change without introducing
new problems. Even if this code never changes, it may be brittle in the sense that it tends to break when
anything around it changes.

Complexity: The more different interacting elements a product has, the more ways it can fail; the more
states or state transitions it has, the more states can be wrong.

Failure History: The more that a product or part of a product has failed in the past, the more you might
expect it to fail in the future. Also, if a particular product has failed in a particularly embarrassing way, it
perhaps should not be allowed to fail in that way again without bring the project team into disrepute.

Dependencies Upstream: One part of a system or one feature of a product may depend on data or
conditions that are controlled by other components that come before it. The more upstream processing
that must occur correctly, the more likely that any bugs in those processes may cause failure in the
downstream component.

Dependencies Downstream: Any particular component that has many other components that rely on it
will involve more risk, because the upstream bugs will propagate trouble downstream.

Distributed Components: A product may be comprised of things that spread out over a large area,
connected by tenuous network links that introduce uncertainty, noise, or lag time into the system.

Open-Ended Input: The greater freedom there is in data, the more likely that a particular configuration
of data could trigger a bug. Lack of filtering and bounding are especially a problem for security.

Hard to Test: When something is hard to test, perhaps because it is hard to observe or hard to control,
there will be greater risk that bugs will go undetected, and it will require extra effort to find the
important bugs.

Hardware: Hardware components can’t be changed easily. Hardware related problems must be found
early because of the long lead time for fixing.

38



Requirements Factors

Aspects of requirements may indicate or promote the presence of bugs.

Ambiguity: Words and diagrams are always interpreted by people, and different people will often have
different interpretations of things. More ambiguity means more likelihood that a bug can be introduced
through honest misunderstanding.

Very High Precision: Sometimes a document will specify a higher level of precision than is necessary or
achievable. Sometimes the product should behave in a way that is more precise than the specification
suggests. In any case, higher the precision required, the more likely it is that the product will not meet
that requirement.

Mysterious Silence: Sometimes a specification will leave out things that a tester might think are
essential or important. This "mysterious" silence might indicate that the designers are not thinking
enough about those aspects of the design, and therefore there are perhaps more bugs in it. This is
commonly seen with error handling.

Undecided Requirements: The designers might have intentionally left parts of the product unspecified

because they don’t yet know how it should work. Postponing the design of a system is a normal part of
Agile development, for instance, but wherever that happens there is a possibility that a big problem will
be hiding in those unknown details.

Evolving Requirements: Requirements are not static, they are changed and developed and extended.
Any document is a representation of what some person believed at some time in the past; and when
when a requirement is updated, it's possible that other requirements which SHOULD have changed,
didn't. Fast evolving requirements often develop inconsistencies and contradictions that lead to bugs.

Imported Requirements: Sometimes requirement statements are "borrowed" — cut and pasted from
other documents or even from other projects. These may include elements not appropriate to the
current project.

Hard to Read: If the document is large, poorly formatted, repetitive, or otherwise hard to read, it is less
likely to have been carefully written or properly reviewed.

Non-Native Writers: When the person writing the specification is not fluent in the specification's
language, misunderstanding and error are likely.

Non-Native Readers: When the people reading and interpreting the specification are not fluent in the
specification's language, misinterpretation is likely.

Critical Feature: The more important a feature is, the more important its bugs will be.

Strategic Feature: A feature might be key to differentiating your product from a competitor; or might
have a special notoriety that would make its bugs especially important.

VIP Opinion: A particular important person might be paying attention to a particular feature or
configuration or type of use, making bugs in that area more important. Or the important person's
fascination with one aspect of the product may divert needed attention from other parts of the product.

39



Operational Factors

The circumstances and patterns of use affect the probability and impact of bugs.
Popular Feature: The more people use a feature, the more likely any bugs in it will be found by users.

Disconnection: Different parts of a product that must work together may fall into incompatible states,
leading to a failure of the system as a whole.

Unreliable Platform: Deployed products may exhibit problems due to variations or failures in the
underlying supporting technology.

Security Threats: Malicious actors will attempt to break in.

Misusable: A feature might be easily misused, such that it might misbehave in a way that while not
technically a flaw in the design, is still effectively a bug.

Glaring Failure: A problem or its consequences may be obvious to anyone who encounters it.

Insidious Failure: The causes or symptoms of a problem may be invisible or difficult to see for some time
before they are noticed, allowing more trouble to build.

40



James Bach, Satisfioe, Inc.
v1.24 11/3/2002 11:07 AM

W’ satisfice.com, hifozAmwv.satisfice.com i1

Is the Product Good Enough?

A Heuristic Framework for Thinking Clearly About Quality

GEQ Perspectives

Stakeholders: Whose opinion about quality matters? (e.g. project team, customers, trade press, courts of law)
Mission: What do we have to achieve? (e.g. immediate survival, market share, customer satisfaction)

Time Frame: How might quality vary with time? (e.g. now, near-term, long-term, after critical events)

Alternatives: How does this product compare to alternatives, such as competing products, services, or solutions?
Consequences of Failure: What if quality is a bit worse than good enough? Do we have a contingency plan?
Ethics: Would our standard of quality seem unfairly or negligently low to a reasonable observer?

Quality of Assessment: How confident are we in our assessment? Do we know enough about this product?

Assess the benefits of the product:

NOUORAWNS=S

-

1.1 Identification: What are the benefits or potential benefits for stakeholders of the product?

1.2 Likelihood: Assuming the product works as designed, how likely are stakeholders to realize each benefit?
1.3 Impact: How desirable is each benefit to stakeholders?

1.4 Individual Criticality: Which benefits, all by themselves, are indispensable?

1.5 Overall Benefit: Taken as a whole, and assuming no problems, are there sufficient benefits for stakeholders?

N

Assess the problems of the product:

2.1 Identification: What are the problems or potential problems for stakeholders of the product?
2.2 Likelihood: How likely are stakeholders to experience each problem?

2.3 Impact: How damaging is each problem to stakeholders? Are there workarounds?

2.4 Individual Criticality: Which problems, all by themselves, are unacceptable?

2.5 Overall Impact: How do all the problems add up? Are there too many non-critical problems?

o

Assess product quality:

3.1 Overall Quality: With respect to the GEQ Perspectives, do the benefits outweigh the problems?
3.2 Margin of Safety/Excellence: Do benefits to outweigh problems to a sufficient degree for comfort?

>

Assess our capability to improve the product:

4.1 Strategies: Do we know how the product could be noticeably improved?

4.2 People & Tools: Do we have the right people and tools to implement those strategies?

4.3 Costs: How much cost or trouble will improvement entail? Is that the best use of resources?

4.4 Schedule: Can we ship now and improve later? Can we achieve improvement in an acceptable time frame?
4.5 Benefits: How specifically will it improve? Are there any side benefits to improving it (e.g. better morale)?
4.6 Problems: How might improvement backfire (e.g. introduce bugs, hurt morale, starve other projects)?

In the present situation, all things considered, is it more harmful than
helpful to further improve the product?

Copyright © 1997-2007, Satisfice, Inc.



About this Framework

42

This analysis framework represents one of many ways to reason about Good Enough quality. It’s based on this assertion:

A product is good enough when all of these conditions apply:

It has sufficient benefits.
It has no critical problems.
The benefits sufficiently outweigh the problems.

In the present situation, and all things considered, further improvement
would be more harmful than helpful.

AR LODdb=~

Each point, here, is critical. If any one of them is not satisfied, then the product, although perhaps good, cannot be good enough. The first
two seem fairly obvious, but notice that they are not exact opposites of each other. The complete absence of problems cannot guarantee
infinite benefits, nor can infinite benefits guarantee the absence of problems. Benefits and problems do offset each other, but it’s important to
consider the product from both perspectives. Point #3 reminds us that benefits must not merely outweigh problems, they must do so to a
sufficient degree. It also reminds us that even in the absence of any individual critical problem, there may be patterns of non-critical
problems that essentially negate the benefits of the product. Finally, point #4 introduces the important matter of logistics and side effects. If
high quality is too expensive to achieve, or achieving it would cause other unacceptable problems, then we either have to accept lower
quality as being good enough or we have to accept that a good enough product is impossible.

The analysis framework (p. 1) is a more detailed expression of the basic Good Enough model. It is meant to jog your mind about every
important aspect of the problem. To apply it, think upon each of the GEQ Factors in light of each of the GEQ Perspectives. This process can
be helpful in several ways:

1. Use it to make a solid argument in favor of further improvement. For instance, you might apply the stakeholder and critical
purpose perspectives to support an argument that a particular packaged software product under development, while possessing cool features
that will please enthusiasts, does not possess certain benefits that mainstream customers require (e.g. convenient data interchange with
Microsoft Office). Mainstream customers may also require higher reliability.

2. Use it to explore how to invest now to support higher standards /ater. If you know at the beginning of a project that there
will be tough quality decisions to make at the end, you can work to assure that the quality bar will be set high. Looking at the framework,
you can see that by lowering the cost of improvement, it may be less of a burden and can go on longer. Preventing problems could cause
higher quality to be attainable in the same time frame.

3. Use it to form your own notion of acceptable quality. There’s nothing sacred about this framework. It’s a work in progress.
Hold your idea of quality as clearly as you can in your mind’s eye, then run through the framework and see if you find any of the questions
jarring or unnecessary. Try to trace the source of your discomfort. Do you prefer different terminology? A model that more closely fits your
technology or market? Are there any missing questions?

Why “Good Enough?”

Software quality assessment is a hard problem. Although there are many interesting measurable quality factors, there is no conceivable
single measure that represents all that we mean by the word quality. Since quality is multidimensional and ultimately a subjective idea, a
responsible and accurate perception of it must be constructed in our minds from all the facts and perceptions. It’s a cognitive process akin to
analyzing the stock market, or handicapping racehorses.

When it comes to maximizing software quality, we have another hard problem-- how good is good enough? Quality is not free, we have to
exert ourselves to achieve it. At what point does it make more sense to turn our attention from improving a particular product to shipping that
product, or at the very least, improving something else? How best can we motivate management to invest in processes and systems that lead
to higher quality for less effort? We can strive for perfection, but what if we run out of time before we achieve that worthy goal? Wouldn’t it
be helpful to form an idea of good enough quality, just in case perfection proves itself to be out of reach? We also need to consider that “as
good as we possibly can do” might not be good enough. Even perfection might not be good enough if we seek to achieve something that’s
impossible to begin with. No matter what we want to achieve, it sure comes in handy to consider the dynamics of required quality vs. desired

quality.

Copyright © 1997-2007, Satisfice, Inc.



Bug Fix Analysis

Problem Analysis

Frequency
1.1

1.2

1.3

Severity
2.1
2.2
2.3
2.4

2.5

2.6

Publicity
3.1

3.2
3.3
3.4

3.5

How was the bug found?
111 Was it found by a user?
1.1.2 Is it a natural or contrived case?
1.1.3 Is it a typical or pathological case?
1.1.4 Was the bug caused by a recent fix to another bug?

How often is it likely to occur?
1.2.1 Is it intermittent or predictable?
122 Is it a one-time problem or ongoing?

How soon after the bug was created did we discover it?

Does the bug cause any user data to be lost?
Will it cause an additional load for Technical Support?
How likely is the user to notice it when it occurs?

Is it the tip of an iceberg?
2.4.1  Will it trigger other problems?
2.4.2 s it part of a class of bugs that should all be fixed?
2.4.3  Does it represent a basic design deficiency?

Was this bug shipped in the previous release?
2.5.1 Did Technical Support hear anything about it?
2.5.2  Has anything changed since the last version that would
make it more or less of a problem?

Is this bug less severe than others we've deferred? more severe than
others we've fixed?

Are certain kinds of users more likely to be affected than others?
311 How sophisticated are those users?
3.1.2 How vocal are those users?
3.13 How important are those users?
3.14 Will it affect the review writers at any major magazines?

Are our competitors strong or weak in the same functional areas?
Is this the first release of this feature or is there an installed base?

Is the problem so esoteric that no one will notice before we can
update the product?

Does it look like a defect to the casual observer, or like a natural
limitation?



Solution Analysis

Identification
4.1
4.2

4.3
4.4
45

Verification
5.1
5.2

5.3

Perspective
6.1
6.2
6.3
6.4
6.5

6.6

Prevention
7.1
7.2
7.3

7.4

Is the solution related to third-party components?

What are the workarounds?
4.2.1 Are they obvious or esoteric?

Can we “document around it” instead of fixing it?
Can the solution be postponed until the next release?

Is a fix known?

45.1 Avre there several possible fixes or just one?

45.2 How many lines of code are involved?

453 Is it complex code or simple code?

454 Is it familiar code or legacy code?

455 Is the fix a tweak, rewrite, or substantial new code?

45.6 How long will it take to implement the fix?

457 What components are affected by the fix?

45.8 Will it require rebuilds of dependent components?

459 Does the fix impact documentation in any way? screenshots? online
help?

What new problems could the fix cause? worst case?

How effectively could we test the fix, if we authorize it?
5211 Was this bug found late in the project? Does that
indicate a weakness in the test suite?

5.2.1.2 Will the test automation cover this case?
5213 Could the fix be sent specially to some or all of the
beta testers?

How hard would it be to undo the fix, if there's trouble with it?

How dangerous is it to make changes in this code?

Will a fix to this component be the only reason to rebuild or remaster?
Who wants this fix internally? What are the politics involved?

How does the overall quality compare to previous releases?

If we think this bug is important, why not slip the schedule by two
weeks and fix more bugs?

What would be the right thing to do? the safe thing to do?

Was the problem caused by a fix approved after code freeze?
What was the error that caused the defect?

Is there any internal error checking or unit test that should be added
to catch bugs of this type?

Is there any review process that could catch bugs like this before they
get into the build?

44



A Concise QA Process

(Developed by me, James Bach, for a start-up market-driven product company with a

small base of customers, this process is intended to be consistent with the principles of
the Context-Driven School of testing and the Rapid Testing methodology. Although it is
not a “best practice”, I offer it as an example of how a concise QA process might look.)

This document describes the basic terminology and agreements for an agile QA process.
If these ideas don’t seem agile to you, question them, then change them.

Build Protocol
Addresses the problem of wasting time in a handoff from development to testing.

O [When time is of the essence] Development alerts testing as soon as they know they’ll
be delivering a build.

Development sends testing at least a bullet list describing the changes in the build.
Development is available to testers to answer questions about fixes or new features.

Development updates bug statuses in the bug tracking system.

U000

Development builds the product based on version controlled code, according to a
repeatable build process, stamping each build with unique version number.

(M

When the build is ready, it is placed on the server.

U

Testing commits to reporting sanity test status within one hour of build delivery.

Test Cycle Protocol
Addresses the problem of diffusion of testing attention and mismatch of expectations
between testing and its clients.

There are several kinds of test cycle:

Q Full cycle: All the testing required to take a releasable build about which we know
nothing and qualify it for release. A full test cycle is a rare event.

Q Normal cycle: This is either an incremental test cycle, during Feature Freeze or Code
Freeze, based on testing done for earlier builds, or it’s an interrupted cycle, which
ends prematurely because a new build is received, or because testing is called off.

Q Spot cycle: This is testing done prior to receiving a formal build, at the spontaneous
request of the developer, to look at some specific aspect of the product.

Q Emergency cycle: “Quick! We need to get this fix out.” If necessary testing will drop
everything and, without prior notice, can qualify a release in hours instead of days.
This would be a “best effort” test process that involves more risk of not catching an
important bug.

45



What happens in a test cycle:
46
Perform smoke test right away.
Install product in test lab.
Run convenient test automation.
Verify bug fixes.
Test new stuff.
Re-test anything suspected to be impacted by changes.
Periodically re-test things not tested recently.
Periodically re-test previously fixed bugs.
Perform “enabled” test activities (what recent additions or fixes make possible).
Revisit mystery bugs.
Continue previous test cycle.
Investigate and report problems; otherwise provide quick feedback to development.
Coordinate help from part-time testers.

oo

Change Protocol
Addresses the problem of excessive retesting or failure to detect important problems late
in the development cycle.

Release Team: This is the person or persons who make the decision (or substantially
contribute to the decision) to release the product. Typically includes development
manager, test manager, product manager, and project manager.

There are different levels of change control because we have competing goals. We want
to get the job done fast, and we want to get it done right. This calls for phased change
control. Freezing allows testing to run briefer test cycles.

On any real project, some of these phases may be skipped. A small release might go
directly to code freeze.

O Alpha: Development manages changes within itself. No externally imposed protocol.

O Feature Freeze: Typically begins with the delivery of a feature complete build. No
new features without specific Release Team approval. Any bug fix can be made
without approval.

Q Code Freeze: Typically begins with the delivery of a release candidate. No changes
of any kind can be made without specific approval by the Release Team.

The release team must meet periodically, perhaps every day, during freezes. They look
over change requests and bugs and decide what will be done.



Release Protocol
Addresses the problem of messing up at the very last minute.

Q Signoff: The release team formally decides that a particular release candidate can be
shipped.

O Package testing: Testing performs final checks, including a virus scan, release notes
review, and file version review. Final installation testing.

U

FCS: Final customer ship.

(]

Acceptance Testing: Customer installs and tests product while testers and developers
stand by to support.

47



48



Putt Putt Saves the Zoo

(Product coverage outline after 1 hour)

Plot Line
pre-rescue parental conversations
post-rescue parental conversations
changing baby conversations & sound bites
Pre-Rescue Sequences
Post-Rescue Sequences
Conversations
Characters
ShopKeeper
Food Cart
Gift Cart
Outback Al
Animal Parents
Animal Babies
Putt-Putt
Props
List of Animals
Map of Zoo
Zoo Chow
Dog
Rope
Shovel
Hot Cocoa
Toolbox
Log
Raft
Cheese puffs
Camera
Screens
Screen states
General
Special
Seal slide
Rapids
Alligator Bridge
Props
Snapshots
Toolbox
List of animals
Sprites
Stateless
State-Based
One shot
Random
Cyclic

Words
Gamettes
Tag
Hockey
Paint Shack
Rescue Gamettes
Tools
Icebergs
Cocoa
Rope
Drawbridge

49



50



Table formatting Test Notes

(After 60 Minutes)

Issues

- This is a very complex feature set. There appear to be many interesting
interactions.

- The analysis, below, is not complete. We need to continue to refine and
enhance it.

- What is the error handling philosophy, here?

- Is there a debug version of this?

- Is there a tool that the other testers use to test this?

Process
* Functional analysis

- Most of what I did was preparatory to creating an inventory of test
requirements.

* Functional exploration

- briefly reviewed help

- toured the menus and functions of Word that were related to table
formatting.

- contrived new table data and reviewed some existing Word files.

- applied various stressing strategies (not systematically)

- I did *not* apply a very precise oracle for most of what I did.

Strategy ideas

Stress test (contrived data and natural data)

Buffer overflow attack

Edit a large book.

Convert a WordPerfect file and work with tables in it.
Convert a web page from HTML and work with a table in it.
Review existing bug reports, or talk to a support guy.
Pairs matrix?

Use a table generation tool

Functions

Table Menu
insert
select
delete
convert
Autoformatting
Drawing Tables

Context Menu
table properties
(more)

Elements of Tables
Cells
Cells across
Cells down
interaction between cells and page breaks
Long tables
repeat headings (page breaks)

51



Elements of Cells
Borders and Shading

Fill color
patterns
text position
text orientation
text alignment
contents
text
pictures
OLE objects
other tables

Other interesting elements

Document types

sequences of actions

interaction with other functions

- save as

- save and restore (format preserved?)

- spell check

- undo

- redo

- printing (compare printed with screen output)

Platform

Memory

processor speed

Operating system

Accessability options
high contrast

52



DiskMapper Test Notes

(After 30 Minutes)
FUNCTIONS

Map Drive
???when is drive mapped?
Drive Selection
Print Map
File Operations
delete
unzip/zip
print
run
information
Invoke Explorer
Exit/Startup
Mapping Method
Color Scheme
level colors
Color by
levels
age
extension
archive
protected
never used
Goto Root
Zoom in/out
Show one/many levels
General Options
Font Options
Online Help
About Box
Toolbar/Menus
Window management
Map display
correctness of proportions
filenames
box graphics
colors
box wvanish
Status bar display
Map Behavior
zooming
highlighting
updating
Settings preservation (dm32.ini)

53



DiskMapper Test Notes >

(after 60 minutes)

The purpose of DM appears to be to provide a view of disk contents in a
manner proportional to the size of each file and folder, and to support
basic file operations on those contents. The proportional display is the
central feature of the product.

Risks:

- disk corruption (causing/scanning)

- accidental deletion

- incorrect proportions

- files not displayed that should be

- ???spurious files displayed

- obsolete view of map

- Multi-tasking interference

- misleading coloring

- Big disks not displayed correctly

- display method corruption (accidentally messing up the settings and
not being able to reset them)

- bad file information

- unreadable map printout

- system incompatibility

- poor performance

- ??2?crashing

- ???interference with other running apps

Major risks:

- display is substantially wrong
- file loss or corruption

- frequent crashes

- system incompatibility

- fails on large data sets

Functional areas to test:

Navigation

Mapping methods
Proportional display
File operations
Documentation

Windows compatibility
General UI

Platform:

Windows 98

2.1 gb disk drive

???bigger drive availability?
??2?Floppy disks?

???Servers



Test data:

???automatic generation of file structure?

files
large (limits???)
small (0)
old
new
extension
archive
protection
usage (never/not never)
names

file groups
large/small juxtaposed
large number of small files

folders
names
deep nesting (max???)
overflow the colors
???1is the root special?

Ini file settings
valid
randomized???



56



An Exploratory Tester’s Notebook

Michael Bolton, DevelopSense
mb@developsense.com

Biography

Michael Bolton is the co-author (with senior author James Bach) of Rapid Software Testing, a
course that presents a methodology and mindset for testing software expertly in uncertain
conditions and under extreme time pressure.

A testing trainer and consultant, Michael has over 17 years of experience in the computer
industry testing, developing, managing, and writing about software. He is the founder of
DevelopSense, a Toronto-based consultancy. He was with Quarterdeck Corporation for eight
years, during which he delivered the company’s flagship products and directed project and
testing teams both in-house and around the world.

Michael has been teaching software testing around the world for eight years. He was an invited
participant at the 2003, 2005, 2006, and 2007 Workshops on Teaching Software Testing in
Melbourne and Palm Bay, Florida; was a member of the first Exploratory Testing Research
Summit in 2006. He is also the Program Chair for TASSQ, the Toronto Association of System
and Software Quality, and a co-founder of the Toronto Workshops on Software Testing. He has
a regular column in Better Software Magazine, writes for Quality Software (the magazine
published by TASSQ), and sporadically produces his own newsletter.

Michael lives in Toronto, Canada, with his wife and two children.

Michael can be reached at mb@developsense.com, or through his Web site,
http://www.developsense.com

Abstract: One of the perceived obstacles towards testing using an exploratory testing approach
is that exploration is unstructured, unrepeatable, and unaccountable, but a look at history
demonstrates that this is clearly not the case. Explorers and investigators throughout history
have made plans, kept records, written log books, and drawn maps, and have used these
techniques to record information so that they could report to their sponsors and to the world at
large. Skilled exploratory testers use similar approaches to describe observations, to record
progress, to capture new test ideas, and to relate the testing story and the product story to the
project community. By focusing on what actually happens, rather than what we hope will
happen, exploratory testing records can tell us even more about the product than traditional pre-
scripted approaches do.

In this presentation, Michael Bolton invites you on a tour of his exploratory testing notebook and
demonstrates more formal approaches to documenting exploratory testing. The tour includes a
look at an informal exploratory testing session, simple mapping and diagramming techniques,
and a look at a Session-Based Test Management session sheet. These techniques can help
exploratory testers to demonstrate that testing has been performed diligently, thoroughly, and
accountably in a way that gets to the heart of what excellent testing is all about: a skilled
technical investigation of a product, on behalf of stakeholders, to reveal quality-related
information of the kind that they seek.

57



Documentation Problems

There are many common claims about test documentation: that it’s required for new testers or
share testing with other testers; that it’s needed to deflect legal liability or to keep regulators
happy; that it’s needed for repeatability, or for accountability; that it forces you to think about
test strategy. These claims are typically used to support heavyweight and formalized approaches
to test documentation (and to testing itself), but no matter what the motivation, the claims have
this in common: they rarely take context, cost, and value into account. Moreover, they often
leave out important elements of the story. Novices in any discipline learn not only through
documents, but also by observation, participation, practice, coaching, and mentoring; tester may
exchange information through conversation, email, and socialization. Lawyers will point out
that documentation is only one form of evidence—and that evidence can be used to buttress or to
skewer your case—while regulators (for example, the FDA') endorse the principle of the least
burdensome approach. Processes can be repeatable without being documented (how do people
get to work in the morning?), and auditors are often more interested in the overview of the story
than each and every tiny detail. Finally, no document—Ieast of all a template—ever forced
anyone to think about anything; the thinking part is always up to the reader, never to the
document.

Test documentation is often driven by templates in a way that standardizes look and feel without
considering content or context. Those who set up the templates may not understand testing
outside the context for which the template is set up (or they may not understand testing at all);
meanwhile, testers who are required to follow the templates don’t own the format. Templates—
from the IEEE 829 specification to Fitnesse tests on Agile projects—can standardize and
formalize test documentation, but they can also standardize and formalize thinking about testing
and our approaches to it. Scripts stand the risk of reducing learning rather than adding to it,
because they so frequently leave out the motivation for the test, alternative ways of
accomplishing the user’s task, and variations that might expose bugs.

Cem Kaner, who coined the term exploratory testing in 1983, has since defined it as “a style of
software testing that emphasizes the personal freedom and responsibility of the individual tester
to continually optimize the value of her work by treating test-related learning, test design, and
execution as mutually supportive activities that run in parallel throughout the project.”® A useful
summary is “simultaneous test design, test execution, and learning.” In exploratory testing, the
result of the last test strongly influences the tester’s choices for the next test. This suggests that
exploratory testing is incompatible with most formalized approaches to test documentation, since
most of them segregate design, execution, and learning; most emphasize scripted actions; and
most try to downplay the freedom and responsibility of the individual tester. Faced with this
problem, the solution that many people have used is simply to avoid exploratory testing—or at
least to avoid admitting that they do it, or to avoid talking about it in reasonable ways. As

! The Least Burdensome Provisions of the FDA Modernization Act of 1997; Concept and Principles; Final
Guidance for FDA and Industry. www.fda.gov/cdrh/modact/leastburdensome.html

% This definition was arrived at through work done at the 2006 Workshop on Heuristic and Exploratory Testing,
which included James Bach, Jonathan Bach, Scott Barber, Michael Bolton, Tim Coulter, Rebecca Fiedler, David
Gilbert, Marianne Guntow, James Lyndsay, Robert Sabourin, and Adam White. The definition was used at the
November 2006 QAI Conference. Kaner, “Exploratory Testing After 23 Years”, www.kaner.com/pdfs/ETat23.pdf

58



McLuhan said, “We shape our tools; thereafter our tools shape us.”® Test documentation is a
tool that shapes our testing. 59
Yet exploration is essential to the investigative dimension of software testing. Testing that

merely confirms expected behaviour can be expected to suffer from fundamental attribution error

(“it works”), confirmation bias (“all the tests pass, so it works”), and anchoring bias (“I know it

works because all the tests pass, so it works™). Testers who don’t explore the software fail to

find the bugs that real users find when they explore the software. Since any given bug is a

surprise, no script is available to tell you how to investigate that bug.

Sometimes documentation is a product, a deliverable of the mission of testing, designed to be
produced for and presented to someone else. Sometimes documentation is a tool, something to
help keep yourself (or your team) organized, something to help with recollection, but not
intended to be presented to anyone”. In the former case, presentation and formatting are
important; in the latter case, they’re much less important. In this paper, I’ll introduce (or for
some people, revisit) two forms of documentation—one primarily a tool, and the other a
product—to support exploratory approaches. The first tends to emphasize the learning
dimension, the latter tends to be more applicable to test design and test execution.

This paper and the accompanying presentation represent a highly subjective and personal
experience report. While I may offer some things that 1’ve found helpful, this is not intended to
be prescriptive, or to offer “best practices”; the whole point of notebooks—for testers, at least—
is that they become what you make of them.

An Exploratory Tester’s Notebook

Like most of us, I’ve kept written records, mostly for school or for work, all my life. Among
other means of preserving information, 1’ve used scribblers, foolscap paper, legal pads, reporter
or steno notepads, pocket notepads, ASCII text files, Word documents, spreadsheets, and
probably others.

In 2005, | met Jon Bach for the first time. Jon, brother of James Bach, is an expert exploratory
tester (which apparently runs in the family) and a wonderful writer on the subject of E.T., and in
particular how to make it accountable. The first thing that | noticed on meeting Jon is that he’s
an assiduous note-taker—nhe studied journalism at university—and over the last year, he has
inspired me to improve my note-taking processes.

The Moleskine Notebook

One factor in my personal improvement in note-taking was James Bach’s recommendation of the
Moleskine pocket notebook. I got my first one at the beginning of 2006, and I’ve been using it
ever since. There are several form factors available, with soft or hard covers. The version | have
fits in a pocket; it’s perfect-bound so it lies flat; it has a fabric bookmark and an elasticized loop
that holds the book closed. The pages can be unlined, lined, or squared (graph paper)°. | prefer
the graph paper; | find that it helps with sketching and with laying out tables of information.

® Marshall McLuhan, Understanding Media: The Extensions of Man (Critical Edition). Gingko Press, Costa
Madera, CA, September 2003.

* See Kaner, Cem: Bach, James, and Pettichord, Bret, Lessons Learned in Software Testing. John Wiley & Sons,
New York, 2002.

> They can also be lined with five-line staff paper for musicians.



The Moleskine has a certain kind of chic/geek/boutique/mystique kind of appeal; it turns out that
there’s something of a cult around them, no doubt influenced by their marketing. Each notebook
comes with a page of history in several languages, which adds to the European cachet. The page
includes the claim that the Moleskine was used by Bruce Chatwin, Pablo Picasso, Ernest
Hemingway, Henri Mattisse, Andre Breton, and others who are reputed to have used the
Moleskine. The claim is fictitious®, although these artists did use books of the same colour, form
factor, with sewn bindings and other features that the new books reproduce. The appeal, for me,
is that the books are well-constructed, beautiful, and inviting. This reminds me of Cem Kaner’s
advice to his students: “Use a good pen. Lawyers and others who do lots of handwriting buy
expensive fountain pens for a reason. The pen glides across the page, requiring minimal pressure

»l

to leave ink.”" A good tool asks to be used.

Why Use Notebooks?

In the age of the personal digital assistant (I have one), the laptop computer, (I have one), and the
desktop computer (I have one), and the smart phone (I don’t have one), why use notebooks?

They never crash.

They never forget to auto-save.

The batteries don’t wear out, they don’t have
to be recharged—and they’re never AA
when you need AAA or AAA when you
need AA.

e You don’t have to turn them off with your
other portable electronic devices when the
plane is taking off or landing.

Most importantly, notebooks are free-form and
personal in ways that the “personal” computer
cannot be. Notebooks afford diversity of
approaches, sketching and drawing, different
thinking styles, different note-taking styles. All
Windows text editors, irrespective of their features,
still look like Windows programs at some level. In
a notebook, there’s little to no reformatting; “undo”
consists of crossing out a line or a page and starting
over or, perhaps more appropriately, of tolerating
imperfection. When it’s a paper notebook, and it’s
your own, there’s a little less pressure to make
things look good. For me, this allows for a more
free flow of ideas.

In 2005, James and Jonathan Bach presented a
paper at the STAR West conference on exploratory

® http://www.iht.com/articles/2004/10/16/mmole_ed3_.php

They’re portable, and thus easy to have consistently available.

~
/
L CRpER!
( Temier
P

WEL FRo J i pBANDeUMENT

PRANTOUMEATT ¢ RECOVERY

REFoCUSING )

B uTEROaT o Fr—'.u.. Vo

BiLANCH L'-,-.-/'.g POTRACKINE ) (AR

CoNdeluRin &
REC orRpiINE
RERORTING . g

==

& EdALUATING

— THE RE=£JCE OF Ay pe THES

LikKeEwy T2 |MPRoUE

EFfoly, AuD 7 P A D [

MA DECRADE ME 8ol oF THE ©.7. EFF
- [NSTEAD OF

A Byt Thxouwsmy, ConvsDER A TES
\DEDL T AxXOnony
— o7

ADD AL AT olcE | pov 't ADDRESS ALl AT oud (

4 EYPLoRaTON , APPL (CATION |uue MTLO W

CRAMEWOLK FoR  EXERCISE. BEL (e /

< ’ |

Figure 1: Page from Michael Bolton's Notebook #2

" http:/iwww.testingeducation.org/BBST/exams/NotesForStudents.htm

60



dynamics, skills and tactics. Michael Kelly led a session in which we further developed this list
at Consultants’ Camp 2006.

Several of the points in this list—especially modeling, questioning, chartering, observing,
generating and elaborating, abandoning and recovering, conjecturing, and of course recording
and reporting—can be aided by the kinds of things that we do in notebooks: writing, sketching,
listing, speculating, brainstorming, and journaling. Much of what we think of as history or
scientific discovery was first recorded in notebooks. We see a pattern of writing and keeping
notes in situations and disciplines where learning and discovery are involved. A variety of
models helps us to appreciate a problem (and potentially its solution) from more angles.
Thinking about a problem is different from uttering it, which is still different from sketching it or
writing prose about it. The direct interaction with the ink and the paper gives us a tactile mode to
supplement the visual, and the fact that handwriting is, for many people, slower than typing, may
slow down our thought processes in beneficial ways. A notebook gives us a medium in which to
record, re-model, and reflect. These are, in my view, essential testing skills and tactics.

From a historical perspective, we are aware that Leonardo was a great thinker because he left
notebooks, but it’s also reasonable to consider that Leonardo may have been a great thinker at
least in part because he used notebooks.

Who Uses Notebooks?

Inventors, scientists, explorers, artists, writers, and students have made notebook work part of
their creative process, leaving both themselves and us with records of their thought processes.

Leonardo da Vinci’s notebooks are among the most famous books in history, and also at this
writing the most expensive; one of them, the Codex Leicester, was purchased in 1994 for $30.8
million by a certain ex-programmer from the Pacific Northwest®. Leonardo left approximately
13,000 pages of daily notes and drawings. | was lucky enough to see one recently—the Codex
Foster, from the collection of the Victoria and Albert Museum.

® Incidentally, the exhibit notes and catalog suggested that Leonardo didn’t intend to encrypt his work via the mirror
writing for which he was so famous; he wrote backwards because he was left-handed, and writing normally would
smudge the ink.



+J.|'||i'-l|-|| - I'l]IJ-HI'U 62
——— .-l'ur Jans

!“«Ill-l"—-‘l plft
q::'.,.: TE ArETEE R

-I;" | :‘ _.-1' i e

wads el g e fas s B

ERAEET ey s
-.1 . st

i l|| "I---il'.a-.‘-I = EEE
dijad e .Fp ™ oty L O e iy
ﬂ;‘:"" Sl b LSRR T PRy =i s
;-\.-'r'!'q-h - wy i - i J
[ O e o |..-l|- sy i i .-r"lff -‘. iy r.r..._.:.,_, 4 I -
RO, PP N, B peen '.411-.'\-* ™ = iy : .
‘h‘"‘l .d-\.|1_ Frurdmop - - _u,l,."q._.'- P " e e e gl i Il
Tl o moed) iy &% ""'l'l.q MY "I-:H- N W L i
p--,-.-.h A albf Jupand D '_'r': L] Possm — N

i L a T i 1 s ey i § Yal s
"_.-:".bq-r.q ]‘ -'H-VI W ]H-_‘-':'—I'l-l-"l*""}'l i b T e ) #
|

2
B

Ti]"!"['ﬁ fF;iT
R
iz
I
. .rm -
4

L]
a
1
&

i e ol e
""I‘""I\'"' A . R, |Ev-u-'l-l-'.rl.--l‘ i gt ---_h:_ -ry o
oY marary dagil ey i‘" o bl i o ko8
N A Ay e o i
LT a:-.'ﬂ amed -\.I‘— L
: .-il..-.--u.].rb-lﬂ e ] Pt o
| ooty -

Figure 2: Leonardo da Vinci, The Codex Foster

As a man of the Renaissance, Leonardo blurred the lines between artist, scientist, engineer, and
inventor®, and his notebooks reflect this. Leonardo collects ideas and drawings, but also puzzles,
aphorisms, plans, observations. They are enormously eclectic, reflecting an exploratory outlook
on the world. As such, his notebooks are surprisingly similar to the notebook patterns of
exploratory testers described below, though none has consciously followed Leonardo’s
paradigms or principles, so far as | know. The form factor is also startlingly similar to the
smaller Moleskine notebooks. Obviously, the significance of our work pales next to Leonardo’s,
but is there some intrinsic relationship between exploratory thinking and the notebook as a
medium?

What Do | Use My Notebook For?

I’ve been keeping three separate notebooks. My large-format book contains notes that | take
during sessions at conferences and workshops. It tends to be tidier and better-organized. My
small-format book is a ready place to record pretty much anything that I find interesting. Here
are some examples:

Lists of things, as brainstorms or catalogs. My current lists include testing heuristics;
reifications; and test ideas. These lists are accessible and can be added to or referenced at any
time. This is my favorite use of the Moleskine—as a portable thinking and storage tool.

“Fieldstones” and blog entries. Collections of observations; the odd rant; memorable quotes;
aphorisms. The term “fieldstone” is taken from Gerald M. Weinberg’s book Weinberg on
Writing: The Fieldstone Method. In the book, Jerry uses the metaphor of the pile of stones that
are pulled from the field as you clear it; then you assemble a wall or a building from the
fieldstones.”® 1 collect ideas for articles and blog entries and develop them later.

° How To Think Like Leonardo da Vinci
% Weinberg, Gerald M., Weinberg on Writing: The Fieldstone Method.



Logs of testing sessions. These are often impromptu, used primarily to practice testing and
reporting, to reflect and learn later, and to teach the process. A couple of examples follow
below.

Meeting notes. He who controls the minutes controls history, and he who controls history
controls the world.

Ultra-Portable PowerPoints. These are one-page presentations that typically involve a table or
a diagram. This is handy for the cases in which I’d like to make a point to a colleague or client.
Since the listener focuses on the data and on my story, and not on what Edward Tufte™ calls
“chartjunk”, the portable PowerPoints may be more compelling than the real thing.

Mind maps and diagrams. | use these for planning and visualization purposes. | need to
practice them more. | did use a mind map to prepare this presentation.

Notes collected as I’'m teaching. When a student does something clever during a testing
exercise, | don’t want to interrupt the flow, but I do want to keep track of it so that I can recount
it to the class and give recognition and appreciation to the person who did it. Moreover, about
half the time this results in some improvement to our course materials'?, so a notebook entry is
very handy.

Action items, reminders, and random notes. Sometimes the notebook is the handiest piece of
paper around, so | scribble something down on a free page—contact names (for entry later),
reminders to send something to someone; shopping lists.

Stuff in the pocket. | keep receipts and business cards (so | don’t lose them). I also have a
magic trick that | use as a testing exercise that fits perfectly into the pocket.

I try to remember to put a title and date on each page. Lately I’ve been slipping somewhat,
especially on the random notes pages.

I’ve been using a second large-format notebook for notes on books that I’m studying. | haven’t
kept this up so well. It’s better organized than my small format book, but my small format book
is handy more often, so notes about books—and quotes from them—tend to go in that.

I’m not doing journaling, but the notebooks seem to remind me that, some day, I will. Our
society doesn’t seem to have the same diary tradition as it used to; web logs retrieve this idea.
Several of my colleagues do keep personal journals.

How Do Other Exploratory Testers Use Notebooks?

I’ve done a very informal and decidedly unscientific survey of some of my colleagues, especially
those who are exploratory testers.

" Tufte, Edward, Envisioning Information. Graphics Press, Chesire, Connecticut, 1990.
12 Bach, James, and Bolton, Michael, Rapid Software Testing. http://www.satisfice.com/rst.pdf.

63



Adam White reports, “My notebook is my life. It's how | keep track of things I have to do. It
supplements my memory so that | don't waste brain power on remembering to remember
something. | just record it and move on.

“I have found a method of taking notes that brings my attention to things. If someone tells me
about a book then I will write "Book™ and underline it twice. Then when flipping back through
my notes | can see that | have a reference to a book that | thought was interesting at some point
in time. | use this process for other things like blogs, websites, key ideas, quotes etc. It makes
organizing information after the fact very easy.”

Adam reports similar experiences to my own in how he came to use Moleskines. He too
observed Jon Bach and James Bach using Moleskine notebooks; he too uses a selection of
books—one large-form for work, one large-form for personal journaling, and a small one for
portability and availability. He also says that the elastic helps to prevent him from losing pens.

Jonathan Kohl also reports that he uses notebooks constantly. “My favorite is my Moleskine, but
I also use other things for taking notes. With my Moleskine, | capture test ideas; article ideas;
diagrams or models I am working on for articles; teaching materials, or some other reason for an
explanation to others; and testing notes®. | have a couple of notes to help focus me, and the rest
are ideas, impressions, and the starred items are bugs. | translated the bugs into bug reports in a
fault tracking system, and the other notes into a document on risk areas. For client work, | don't
usually use my Moleskine for testing, since they may want my notes.” This is an important point
for contractors and full-time employees; your notebook may be considered a work product—and
therefore the property of your company—if you use it at work, or for work.

“I also use index cards (preferably post-it note index cards), primarily for bug reports,” continues
Jonathan. “My test area is often full of post-its, each a bug, at the end of a morning or afternoon
testing session. Over time, | arrange the post-its according to groups, and log them into a bug
tracker or on story cards (if doing XP.) When | am doing test automation/test toolsmith work, |
use story cards for features or other tasks, and others for bugs.”

Jonathan also uses graph-paper pads for notes that he doesn't need to keep. They contain rough
session and testing notes; diagrams, scrawls, models, or things that he is trying to understand
better; analysis notes, interview points, and anything else he’s interested in capturing. “These
notes are illegible to most people other than me, and | summarize them and put what is needed
into something more permanent.” This is also an important point about documentation in
general: sometimes documentation is a product—a deliverable, or something that you show to or
share with someone else. At other times, documentation is a tool—a personal aid to memory or
thought processes.

“l worked with engineers a lot starting out, so | have a black notebook that I use to record my
time and tasks each day. | started doing this as an employee, and do it as a consultant now as
well.”

Fiona Charles also keeps a project-specific notebook. She uses a large form factor, so that it can
accommodate 8% x11 pages pasted into it. She also pastes a plastic pocket, a calendar, and loose
notes from pre-kickoff meetings—she says that a glue stick is an essential part of the kit. In the

3Jonathan provides an example at http://www.kohl.ca/articles/Exploratory Testing_Musicofinvestigation.pdf

64



notebook, she records conversations with clients and others in the project community. She uses
clear termination line for dates, sets of notes, and “think pages.”

Jerry Weinberg also uses project notebooks. On the first page, he places his name, his contact
information, and offer of a reward for the safe return of the book. On the facing page, he keeps a
list of contact info for important people to the project. On the subsequent pages, he keeps a daily
log from the front of the book forwards. He keeps a separate list of learnings from the back of
the book backward, until the two sections collide somewhere in the middle; then he starts a new
book. “I always date the learnings,” he says. “In fact, | date everything. You never know when
this will be useful data.” Like me, he never tears a page out.

Jerry is also a strong advocate of journaling*. For one thing, he treats starting journaling—and
the reader’s reaction to it—as an exercise in learning about effecting change in ourselves and in
other people. “One great advantage of the journal method,” he says, “is that unlike a book or a
lecture, everything in it is relevant to you. Because each person’s learning is personal, | can’t
you what you’ll learn, but I can guarantee that you’ll learn something.” That’s been my
experience; the notebook reflects me and what I’m learning. It’s also interesting to ask myself
about the things, or kinds of things, that | haven’t put it.

Jon Bach reports that he uses his notebooks in several modes. “‘Log file’, to capture the flow of
my testing; ‘epiphany trap’, to capture "a ha!" moments (denoted by a star with a circle around
it); diagrams and models—for example, the squiggle diagram when James and I first roughed out
Session-Based Test Management; to-do lists—Iots and of lots them, which eventually get put
into Microsoft Outlook's Task Manager with a date and deadline—reminders, flight, hotel, taxi
info when traveling, and phone numbers; quotes from colleagues, book references, URLS; blog
ideas, brainstorms, ideas for classes, abstracts for new talks | want to do; heuristics, mnemonics;
puzzles and their solutions (like on a math exam that says "show your work™); personal journal
entries (especially on a plane); letters to my wife and child -- to clear my head after some
heinous testing problem I might need a break from.”

Jon also identifies as significant the paradigm ““NTSB Investigator.” I'll look back on my old
notes for lost items to rescue—things that are may have become more important than when | first
captured them because of emergent context. You would never crack open the black box of an
airplane after a successful flight, but what if there was a systemic pattern of silent failures just
waiting to culminate in a HUGE failure? Then you might look at data for a successful flight and
be on the lookout for pathologies.”

Example: An Impromptu Exploratory Testing Session

I flew from Delhi to Amsterdam. | was delighted to see that the plane was equipped with a
personal in-flight entertainment system, which meant that I could choose my own movies or TV
to watch. As it happened, | got other entertainment from the system that | wouldn’t have
predicted.

The system was menu-driven. | went to the page that listed the movies that were available, and
after scrolling around a bit, | found that the “Up” button on the controller didn’t work. 1 then
inspected the controller unit, and found that it was cracked in a couple of places. Both of the

4 Becoming a Technical Leader, pp. 80-85

65



cracks were associated with the mechanism that returned the unit, via a retractable cord, to a
receptacle in the side of the seat. | found that if I held the controller just so, then | could get
around the hardware—but the software failed me. That is, | found lots of bugs. | realized that
this was an opportunity to collect, exercise, and demonstrate the sorts of note-taking that I might
perform when I’m testing a product for the first time. Here are the entries from my Moleskine,

and some notes about my notes.

P\

ENTERTRINMENT CoNTROL H“m
SEAT 3TA , % 31

HpaepbwaArRE.

T-ioe oF Cpef (@pee {(.OM'iRDL
PAD) SEPARATING FRoM  BoTiem

(cEcL PHone) 0F CASE @ TOP

EnP oF conmen PAD 7 |
— Fﬁw
— ROTICED A wiupb
oF LAY T eu =S
ol FREHOE W @ e MBI T
@ P o B\E areac
NeaR CATEHA
Ul T — BrovEe SRR CE#BP
— COMPARED wN T o gifve
SEATMATE'S JwaiT — T WAS

BRowEN N THE SAME WhY & BuT
woT PS BADLY  (21B)

— LODKED FOR. MRMUFACTURER'S
1D | —DB AT Fies T — Dl -
I MAEAZILE T

— Fouub BIE BREAK pEAR CaTe

# |S50E. — woulh HELP TDh HAVE
CAMCRA TO SHORTEN PESCRUATION

= |PER TUAT CRACEED cPE  MA|
CPUSE UP RuTiEN MerLEuNaoN
BUT REAEMRERED OSSP TIBOIT saouw
UP A5 AN oPTION .

— N.B. TMERE 's B cBLL PHonE
REYPAD oW THE BoTTor — WeN T
TEST AT

~THERE'S A CRENT CHEDSNIPIVG
SoT ON L. SINE T Woa'T TEST
THAT

~ (WELRD SCREEN TRAVER=AL. —NARD
™ TEAL (IF Hfw ok gw
wHAT'S oM SeRlEN T

~ POE PREMEALHIC! MORE Buuse(
Hal REST oF osp —

wWHAT 'S ey
~ PUR|NG moutt PREwENS. | HOME
BofToN ovgRLoADED </ FF 3> BN,
So can'T B0 HerD PuRUE PREVIE.)S

— AT “EAST OMNCE N"T—‘P}BQ oF
Scpepn Coveeed B Rea BLood
A

When | take notes like this,

\

they’re a tool, not a product. |
don’t expect to show them to
anyone else; it’s a possibility, but
the principal purposes are to
allow me to remember what | did
and what | found, and to guide a
discussion about it with someone
who’s interested.

I don’t draw well, but I’'m slowly
getting better at sketching with
some practice. | find that | can
sketch better when 1I’'m willing to
tolerate mistakes.

— PRESSINE HELP FRon Ml
SepREN “Dotow ' PROVUIBE HELR !
TRKES ME- TD LANGUREE SECELNDH

So pOES 4

RED Bucck ConTMMEDR A
G2 OF SGELE -LANE TRANSPHREST
HoLES — CoRRECT Piiquet VEIBLE
THROUEs, THE UWOLES

WRITEDR TIL Exb OF PRoN0 —
RED BlLoo DISAPPEARLD wisEnl
LY {w{r—-lsu\) HENY REDISPUM ED

—F

= 56y Eaen Loge
Ko @ i i ] e )
_.—-—'—'_"_
WHAT's 8M
MoV B4 -
T P'L(.T".U B
Pus\L L
GxAmes OFTioNs CHoE:
Kip% gems MU E-
Flest Thood  100TE R, SufPoRL
ans/emmin | FOR AT D?‘f’f 2
®| LLruTED  CHPpRS>
Fwo G Y0 — GEte Sieer
SCASEN OFF ovoh- 2 42 VEET 3““”
© HELT (P
—
.

In the description of the red block, at the top of the left page, | failed to mention that this red

block appeared when | went right to the
reproduce.

“What’s On” section after starting the system. It didn’t

66



Whenever | look back on my notes, | recognize things that I missed. If they’re important, | write
them down as soon as | realize it. If they’re not important, | don’t bother. | don’t feel bad about
it either way; | try always to get better at it, but testers aren’t omniscient. Note “getting
sleepy”—if | keep notes on my own mental or emotional state, they might suggest areas that |
should revisit later. One example here: on the first page of these notes, | mentioned that |
couldn’t find a way to contact the maker of the entertainment system. | should have recognized
the “Feedback” and “Info” menu items, but | didn’t; I noticed them afterwards.

TiHdo Ay

— PeaTheeED. DID A VERY
TENTATIVE AND Low = [MBARCT
TEST OF RETRACT NG COLD.
T Bl RREAK. 1S AT THE
PounT WHERE. THC uniT HITS

A VERH HAWD PART oF THE
RECEP TACLE. — RueReeiLE THEMT

— TURNERS O THE OdIT: NaviedTE)
T (FeedT TRACKwWE Sceeb
ScREEN GOES ComPLEXBAY OFF
(7 APPEARS, wHER FETOL NG i}

T DAP of SwCH[mE s THAT
MOBE

— PREESED Mole. RUTTEN — PReMPTS
TO RESUME FUGT TRACKING O
RETUR— a0 MEUY - CEaRE BuT
Does LT ¢ELELr THE HIGHU - F)
GpTiem — oV HAvE TO Pu. »
Oe THE NAV S9TTOM

MOUES

Ko LRTEST N
(15 movies)
Pouml e ¥ SuHownN AS
o oprion Lineowci 1)

wirden 4 | i se wonws 4 Too

(=] cATEST
Kemp cigraef
cupssIcs
FAMIL
wWoRLh CINEmAq

Haal
® e #

—~ PREAS  Hellf AT THLS Porar
BRiNG ME oMLy T0 A LAMNE
WL -USTRAMION OF How B USE
P oA g —Nb WA T CREC
HELP, APPARENTM| UWHEMD | FINISH,
(‘M DUMPED BACKk TO Mar MEwo
AND HAVE D STARTOVER

= FRO™ "CHOISE LAVGUAECE ©

L SCREENY, 1T APTEARS | CAW CossE
HRTUE ANGUIGE FOR HELP Rut

MET For THE PALKEE OVERALL —

After a few hours of
rest, | woke up and
started testing again.

Jon Bach recently
pointed out to me that,
in early exploration, it’s
often better to start not
by looking for bugs, but
rather by trying to build
a model of the item
under test. That
suggests looking for the
positives in the product,
and following the happy
path. 1 find that it’s
easy for me to fall into
, the trap of finding and

reporting bugs. These

notes reflect that | did fall into the trap, but I also tried to check in and return to modeling from
time to time. At the end of this very informal and completely freestyle session, | had gone a long
way towards developing my model and identifying various testing issues. In addition, I had
found many irritating bugs.

Why perform and record

testing like this? The
session and these notes,
combined with a
discussion with the
project owner, might be
used as the first iteration
in the process of
determining an overall

(and perhaps more
formal) strategy for
testing this product. The
notes have also been a
useful basis for my own

introspection and critique

—I0 worLd CINEMA,
FOR THE MOoUIES LISTED AS
(t.'_n,, vc\h Sou
NO | ADICHTION OF WHAT THESE.
MEAW .
w/ IDEDGRAMS T ILUFER -5
HMEMNS SUBTITLES

T USTINES WoH'T MEAN MUCH -
™ pon -EaellSniey, esp- B

CAN & UAETS
Mn /CalEn —S)

Coud wBE VSE FLAGS L

'

TU MENY:

PEWS — Bupne ScREEN

spear — (R qems) L _sonmy |~
Comeny = SBERIG T S ve
DRAMA

UPESTYLE

CULATURE 3

N ATORE i

TRAVEL

KEEP Mav'iue TO R, AND gueviAny -

Yr | GET (uTeRudoNs ow Hol 7
USE BorTmsMm BoTERS ((Meee

THAN ANY HELP SCREEN Sp -Fp‘{g)

—\

— | UKE THE BREADTYH OF

SELgcTion — PRETTY |MPRESSIVE.

~ WHEN SEAT AHCAR 18 REQIWED

WAvE T GE5 vEed Low o

S€e ME SREEd  (CLssic weo ndeE

:s.sug)

REwinD M HARD T2 SCE PRoRES.

oR, FoeiTiow or RATE

Biuoc - SToPrER -5
To WATEH HILL STREET dLvES

Oi PRUSE | CLAIMS ELhPoch
PROGRAN TINE (S 2 HinugEs —

L K THATS SNtE LAST <OMmiia it—
BREAK 10 ORI INA. SHow

SMows EURSCD FROCRAM TIME
BUT REMANING  FLltqT T M-

p SELeNE PAJVSE mpREUTS Mrf@—f
SHew > )T i EwarsED TimE—
//Poa:_ SCavies fﬁz\;

— SERECTION S(REEV/SAYS fLegen

BUTTer | il Pupy — 1T DeESR'T
YoU WAVE TD USE THE P “uTiLE

(X, T "/

67



of my performance, and to show others some of my though process through an exploratory
testing session.

A More Formal Structure for Exploratory Testing

Police forces all over the world use notebooks of some description, typically in a way that is
considerably more formalized. This is important, since police notebooks will be used as
evidence in court cases. For this reason, police are trained and required to keep their notebooks
using elements of a more formal structure, including time of day; exact or nearest-to location; the
offence or occurrence observed; the names and addresses of offenders, victims or witnesses;
action taken by the officer involved (e.g. arrests), and details of conversations and other
observations. (The object of the exercise here is not to turn testers into police, but to take useful
insights from the process of more formal note-taking.)

How can we help to make testing similarly accountable? Session-Based Test Management
(SBTM), invented by James and Jonathan Bach in 2000 is one possible answer. SBTM has as its
hallmark four elements:

Charter

Time Box
Reviewable Result
Debriefing

The charter is a one- to three-sentence mission for a testing session. The charter is designed to
be open-ended and inclusive, prompting the tester to explore the application and affording
opportunities for variation. Charters are not meant to be comprehensive descriptions of what
should be done, but the total set of charters for the entire project should include everything that is
reasonably testable.

The time box is some period of time between 45 minutes and 2 % hours, where a short session is
one hour (+/- 15 minutes), a long session is two, and a normal session is 90 minutes. The
intention here is to make the session short enough for accurate reporting, changes in plans (such
as a session being impossible due to a broken build, or a session changing its charter because of a
new priority), but long enough to perform appropriate setup, to get some good testing in, and to
make debriefing efficient. Excessive precision in timing is discouraged; anything to the nearest
five or ten minutes will do. If your managers, clients, or auditors are supervising you more
closely than this,

The reviewable result takes the form of a session sheet, a page of text (typically ASCII) that
follows a formal structure. This structure includes:

e Charter

e Coverage areas (not code coverage; typically product areas, product elements, quality
criteria, or test techniques)

e Start Time

e Tester Name(s)

e Time Breakdown
e session duration (long, normal, or short)

68



test design and execution (as a percentage of the total on-charter time)

bug investigation and reporting (as a percentage of the total on-charter time) 69

session setup (as a percentage of the total on-charter time)

charter/opportunity (expressed as a percentage of the total session, where opportunity

time does not fit under the current charter, but is nonetheless useful testing work)

e Data Files

e Test Notes

e Bugs (where a “bug” is a problem that the tester and the test manager reasonably believe
represents a threat to the value of the product)

e Issues (where an “issue” is a problem that threatens the value of the testing process—missing
information, tools that are unavailable, expertise that might be required, questions that the
tester might develop through the course of the session)

There are two reasons for this structure. The first is simply to provide a sense of order and
completeness for the report and the debrief. The second is to allow a scripting tool to parse
tagged information from the session sheets, such that the information can be sent to other
applications for bug reporting, coverage information, and inquiry-oriented metrics gathering.
The SBTM package, available at http://www.satisfice.com/sbtm, features a prototype set of batch
files and Perl scripts to perform these tasks, with output going to tables and charts in an Excel
spreadsheet.

The debrief is a conversation between the tester'> who performed the session and someone
else—ideally a test lead or a test manager, but perhaps simply another tester. In the debrief, the
session sheet is checked to make sure that it’s readable and understandable; the manager and the
tester discuss the bugs and issues that were found; the manager makes sure that the protocol is
being followed; and coaching, mentoring, and collaboration happen. A typical debrief will last
between five to ten minutes, but several things may add to the length. Incomplete or poorly-
written session sheets produced by testers new to the approach will prompt more questions until
the tester learns the protocol. A highly complex or risky product area, a large number of bugs or
issues, or an unfamiliar product may also lead to longer conversations.

Several organizations have reported that scheduling time for debriefings is difficult when there
are more than three or four testers reporting to the test manager or test lead, or when the test
manager has other responsibilities. In such cases, it may be possible to have the testers debrief
each other.

At one organization where | did some consulting work, the test manager was also responsible for
requirements development and business analysis, and so was frequently unavailable for
debriefings. The team chose to use a round-robin testing and debriefing system. For a given
charter, Tester A performed the session, Tester B debriefed Tester A, and at regression testing
time, Tester C took a handful of sheets and used them as a point of departure for designing and
executing tests. For the next charter, Tester B performed the testing, Tester C the debrief, and
Tester A the regression; and so forth. Using this system, each tester learned about the product
and shared information with others by a variety of means—interaction with the product,
conversation in the debrief, and written session sheets. The entire team reported summaries of

5 Or “testers”; SBTM can be used with paired testers.



the debriefings to the test manager when he was not available, and simply debriefed directly with
him when he was.

Two example session sheets follow. The first is an account of an early phase of exploratory
testing, in which the testers have been given the charter to create a test coverage outline and a
risk list. These artifacts themselves can be very useful, lightweight documents that help to guide
and assess test strategy. Here the emphasis is on learning about the product, rather than searching
for bugs.

The second is an account of a later stage of testing, in which the tester has sufficient knowledge
about the product to perform a more targeted investigation. In this session, he finds and reports
several bugs and issues. He identifies moments at which he had new test ideas and the
motivations for following the lines of investigation.

70



Example: Session Sheet for a Reconnaissance Session

Create 2 test coverage outline and risk list for DecideRight.

EAFERS - | Test coverage is not merely code coverage. Functional areas, platforms,
DecideRight

05 | WinGE data, operations, and test techniques, are only a few ways to model the test

Build | 1.2 space; the greater the number and variety of models, the better the
dtrategy | Emploration & Analysis coverage.

START I

SBTM lends itself well to paired testing. Two sets of eyes together often
S —— find more interesting information—and bugs—than two sets of eyes on

Jonathan Bach their own.
Tim Parkmam

TASE EREAFDOWH I

T — Sessions in which 100% of the time is spent on test design and execution
short are rare. This reconnaissance session is an exception; the focus here is on

learning, rather than bug-finding.
$TEST DESIGH AND EXECTTION

oo

#ED05 INVESTIGATION ANMD EEPORTING
o

#5ES3I0NW 3ETTP

o Any data files generated or used during the session—in the form of
independent reports, program input or output files, screen shots, and so on—

ﬁ?}iﬂi VE. QEEORTTNITY get stored in a directory parallel to the library of session sheets.

DATA FILES

too-j=sb-010416-a txt
rl-j=b-01D0%216-a.tut

TEST HOTES

Tim and I walked through the User Guide tzble of content= and index to create
the following TCOD:

Jperacing Sy=tems: k

WinBE

WinZ 0DD A test coverage outline is a useful artifact with which to guide and assess a test
strategy (the set of ideas that guide your test design), especially one which we’re
using exploratory approaches. A test coverage outline can be used as one of the
Imstallation inputs into the design of session charters.

U=zer Mamazl

General Features:

Unline Help
oI

Preferences

71



Prominent Windows:

Mzin Table window
Criteria Weights window
Option Bating= window
Documents window
Start-up window

Managers and Wimards:

DecideRight Advisor
Category Label Editor
Fumeric Editor
Scenario Mamager
Ereport Generator
TuickBuild

Decision Elemembs:

Language Elements
Preferences

Sensitivity Indicators R L. R
Weighsing A risk list is another useful tool to help guide a test strategy. The
Input Option= risk list can be as long or as short as you like; it can also be broken

g;;:::'::“n'f;]i’;; down by product or coverage areas.

Ba=eline

Interoperability:

JLE

Import / Export
Graphs

Printing

Risk list for DecideRight:

* It will suggest the wrong decisions.

* People will use the product incorrectly.

# It will incorrectly compare scERmarios.

* Bcenarios may become corrupted. “Issues” are problems that threaten the value of the

* Iz will mo% be able ©o handle complex deciziom=.| testing process. Issues may include concerns, requests for
£mas missing information, a call for tools or extra resources,
----------------------------------------------- pleas for testability. In addition, if a tester is highly

HH/A uncertain whether something is a bug, that can be

e | reported here.

#I55TE

Mamuzl mentions different placforms (Win 2.1, WEW, and WinlT 2.51) and does
not mention WinZ000. We think Win Z000 is important o test on and that the
clder O08e= are no longer meaningful .

#L353TE
We did this aznzly=is cm WinBE. I have no data to =uggest that features may
be different on other operating systems, but ['m not sure abouts that.

72



Example: Session Sheet for a Bug-Finding Session

Explore a2 decision created with QuickBr the wizard that guides the user
T h the options, criteria, and weights neesded o calculate the best

FAREAS A single session can cover more than one functional area of

;3 I WizOE the product. Here the testers obtain coverage on both the
uild . . .

Do cideRs GmickFuild QuickBuild wizard and the report generator

Decide Frport Generator

Serat

Scrategy Exploration & Analy=is

The goal of any testing session is to obtain coverage—test design and
il execution, in which we learn good and bad things about the product.
shors < Bug investigation (learning things about a particular bug) and setup
(preparing to test), while valuable, are interruptions to this primary
goal. The session sheet tracks these three categories as inquiry
§5UG TNVESTIGATION AND REPORTING mgtrics—_metrics that are de_signed t(_) prom_pt questions, rather than to
z0 drive decisions. If we’re doing multiple things at once, we report the
highest-priority activity first; if it happens that we’re testing as we’re
investigating a bug or setting up, we account for that as testing.

#TEST DESIGH ANMD EXECTUTIOH

e

food.rtf
foodZ. rtf
food2. r&f

t I already inew the an=wer to: What kind of food
I wanted to see if DecideRight could reach the same

Test notes tend to be more valuable when they include the motivation for a given test,
or other clues as to the tester’s mindset. The test notes—the core of the session sheet—
help us to tell the testing story: what we tested, why we tested it, and why we believe
that our testing were good enough.

Mexwicanm

* Italiam

Information generated from the session sheets can be fed back into the estimation process.

test cycle. (Let’s say, for this example, 80 charters).
e Second, we’ll look at the number of testers that we have available. (Let’s say 4.)

First, we’ll cast a set of charters representing the coverage that we’d like to obtain in a given

e Typically we will project that a tester can accomplish three sessions per day, considering that
a session is about 90 minutes long, and that time will be spent during the day on email,
meetings, breaks, and the like.

e We must also take into account the productivity of the testing effort. Productivity is defined

here the percentage of the tester’s time spent, in a given session, on coverage—that is, on test

73



design and execution. Bug investigation is very important, but it reduces the amount of
coverage that we can obtain about the product during the session. It doesn’t tell us more
about the product, even though it may tell us something useful about a particular bug.
Similarly, setup is important, but it’s preparing to test, rather than testing; time spent on
setup is time that we can’t spend obtaining coverage. (If we’re setting up and testing at the
same time, we account for this time as testing. At the very beginning of the project, we
might estimate 66% productivity, with the other third of the time spent on setup and bug
investigation. This gives us our estimate for the cycle:

80 charters x .66 productivity x 4 testers x 3 sessions per day = 10 days

Exploratory testing, by
intention, reduces
emphasis on specific
predicted results, in order
to reduce the risk of
. I e s . inattentional blindness.
CisCu-ation: - WOu.d LlLXt TO JdevOoTEe &4 SEI=l0om TO ..

By giving a more open

-?j T wk between H/A and 277 values mandate to the tester, the
aptes approach affords better
Toonz.ETE opportunities to spot

unanticipated problems.

he he=t choice even though my an=wer was "Pigza.

# DmcideRight showed my 6 choices (options] in order of importance but does

it ranked BTG below)
# DecideRight did show my criteria ranked in order, however

not describe

FOOD2.RTE
Created this file hecau=e I had 2 test idea: add some criteria optioms
to an existing decision table and re-rum the report

New test ideas come up all the time in an
exploratory testing session. The tester is
empowered to act on them right away.

et reflected and recalc'ed

Ee=mlt: PASS -- changes

g

Found a problem in the formatting, though (see

: does mliminating unknown value=s remove the disclaimer at the top

Some elements in the deciszion table which
labeled "To Be Rated™ or "Unkoown,”™ and it may

draw conclusion= from the data.”)

“Opportunity” work is
testing done outside the
scope of the current charter.
Again, testers are both

OPPOEITUHITY: Hoticed that pushpin icon om toolbar for decision table does

nothing when no optionm is h hted. (=me BEUS & below] empowered and encouraged
to notice and investigate

B i imEerrumted by mh call will ick thi= wm i therr =m==i .

Se=szion interrupted by phone call. Will pick this up in other =es=zion problems as they find them,

CORDITOW. .
and to account for the time

Copclusions: I'd like apnother ses=ziom or two to learn the algorithm in the session sheet.

DecideRight uses to make decisions. Then I can werify that the report is I

RCCuratce.

The #BUG tag allows a text-processing tool to transfer
this information to a master bug list in a bug tracking
I system, an ASCI| file, or an Excel spreadsheet.

605 1

Hot dragging the weight slider for a criteria item leads &0 am ?77 instead of

max "Foor”

Repzao: - eiermaiis . “Some options” might be vague here; more likely,
S 77 CEURSE MmIckhuIicg SO CERITe  onmew deoris based on our knowledge of the tester, the specific
Z -- put in =ome opticns Hext

options are be unimportant, and thus it might be

wasteful and even misleading to provide them. The
tester, the test manager, and product team develop
consensus through experience and mentoring on how to
note just what’s important, no less and no more.

74



When new information comes in—often in the form of new productivity data—we change one or
more factors in the estimate, typically by increasing or decreasing the number of testers,
increasing or reducing the scope of the charters, or shortening or lengthening the cycle.

—— put in =mome criteria Hext

criteria move on to the Rate Options
| for cone of the options

the

g 777 instead of "Boor™. Since

default position of & ider is at the enod of the Poor =cale, I

az=umed it would be logged a5 & maximum "Foor™ walue, Dot "mnknown™.
BTG 2
Erport is missing descriptor for Option section

Erpro:

- T CIEaTE

y were ranked.

report, it tells e ordex: ("The
in order of importamee]] .”

Listing all of the possible
expectations for a given test
is impossible and pointless;
listing expectations that
have been jarred by a
probable bug is more
efficient and more to the
point.

#EUG 2

Graph labels

Y=aMiLE are

Erpro:
1 == create a

-
L

h i hat
ild with all the d

R—

Be=ult: The y-amxi= labels truncated.

are

A step-by-step sequence to
perform a test leads to
repetition, where variation is
more likely to expose
problems. A step-by-step
sequence to reproduce a
discovered problem is more
valuable.

§60G ¢ OPPORTONMITY
Pu=hpin toolbar button

Wiew/edit explanatory text for a2 deci=zion =lement”
table

doesn othing if oo optiom is selected in the decision

option First.

IS30E3

FISSTE 1

I'd like amother session or two to learn the algorithe DecideRight uses to
make decisions. Then I can verify that the report is accurabe.

33UE 2
at the difference hetween H/A d 277? values?

Some questions have been raised as to whether exploratory approaches like SBTM are
acceptable for high-risk or regulated industries. We have seen SBTM used in a wide range of
contexts, including financial institutions, medical imaging systems, telecommunications, and

hardware devices.

Some also question whether session sheets meet the standards for the accountability of bank
auditors. One auditor’s liaison with whom | have spoken indicates that his auditors would not be
interested in the entire session sheet; instead, he maintained, “What the auditors really want to

75



see is the charter, and they want to be sure that there’s been a second set of eyes on the process.

They don’t have the time or the inclination to look at each line in the Test Notes section.” 76

Conclusion

Notebooks have been used by people in the arts, sciences, and skilled professions for centuries.
Many exploratory testers may benefit from the practice of taking notes, sketching, diagramming,
and the like, and then using the gathered information for retrospection and reflection.

One of the principal concerns of test managers and project managers with respect to exploratory
testing is that it is fundamentally unaccountable or unmanageable. Yet police, doctors, pilots,
lawyers and all kinds of skilled professions have learned to deal with problem of reporting
unpredictable information in various forms by developing note-taking skills. Seven years of
positive experience with session-based test management suggests that it is a useful approach, in
many contexts, to the process of recording and reporting exploratory testing.

Thanks to Launi Mead and Doug Whitney for their review of this paper.



Install Risk Catalog

Functional suitability

« Installer lacks modern, expected features
* no uninstall
* no custom install
« no partial install (“add™)
* no upgrade install

Reliability
« Intermittent failure

Fault tolerance/recoverability

« Can’t back up

« Can’t abort

« No clean up after abort

* Mishandled read error

* Mishandled disk full error

Correctness

» Wrong files installed
« temporary files not cleaned up
« old files not cleaned up after upgrade
« unneeded file installed
« needed file not installed
« correct file installed in the wrong place
« Wrong INI settings/registry settings
« Wrong autoexec/config settings
« Files clobbered
« older file replaces newer file
« user data file clobbered during upgrade

Compatibility
« Installer does not function on certain platforms
« Other apps clobbered
* HW not properly configured
« HW clobbered for other apps
* HW not set for installed app
« Screen saver disrupts install
« No detection of incompatible apps
« apps currently executing
« apps currently installed

Efficiency
 Excessive temporary storage required by install process

Usability

« Installer silently replaces or modifies critical files or parameters
« Install process is too slow
« Install process requires constant user monitoring
« Install process is confusing
« Ul is unorthodox
Ul is easily misused
« Messages and instructions are confusing
 Mistakes during install process readily cause loss of effort

77



78



TNT QA Task Analysis
BC4.0 & BP7.0
7/12/92

QA Requirements Summary:

Tool Popularity | Rate of Change | Complexity | Existing automation $§gtlijr:;id
TD32 High High High None Extensive
TDX High High High Minimal Extensive
TDW High High High Moderate Extensive
TDV High High High Moderate Extensive
TD286 High Low High Moderate Moderate
TD386 High Low High Moderate Moderate
TD High Low High Moderate Moderate
GUIDO High High High Minimal Extensive
TPROF Moderate Moderate High None Moderate
TPROFW Moderate Moderate High None Moderate
TF386 (TFV) Low Low High Minimal Moderate
TFREMOTE Low Low Moderate None Minimal
TDREMOTE Moderate Low Moderate None Minimal
WREMOTE Low Low Moderate None Minimal
WRSETUP Low Low Low None None
TDRF Moderate Low Low None None
TDUMP32 Moderate Moderate Low None Minimal
TDUMP Moderate Low Low None None
TDINST Moderate Moderate Low Minimal Minimal
TDINST32 Moderate High Low None Minimal
TDSTRIP 72? Moderate Low None Minimal
TDMEM 72? Low Low Minimal None
TDDEV ?7?? Low Low Minimal None
TDH386.SYS High Low Low Moderate Moderate
TDDEBUG.386 | High Low Low None Minimal
Examples 777 Moderate Low None Minimal
TASM & tools Moderate Low High Moderate Moderate

Items are boldfaced where the existing automation and beta testing will have to be augmented by new automation
and hand testing.



Task Sets (? denotes unstaffed):

Guido Testing

(General Testing Tasks)

Produce feature outline

Produce sign-off checklist

Complete smart-script system version 1.0
Analyze hard mode vs. soft mode Integrate 100
applications into smart-script system

TDX Testing

(General Testing Tasks)

Produce sign-off checklist

Maintain communication between Purart and Gabor
Learn about DPMI

Test real mode stub

Test remote debugging

? TD32 Testing (Windows)

(General Testing Tasks)

TDINST32

Produce sign-off checklist

Learn WIN32s platform

Determine Windows NT dependencies

Track changes in NT and WIN32s Track differences
between Microsoft Win32s & Rational

? TD32 Testing (DPMI32)
(General Testing Tasks)

TDUMP32

Produce debugger example for doc.
Produce sign-off checklist

Learn DPMI32 platform

Track development of DPMI132
Coordinate testing w/DPMI32 testers

? TD/TDV Testing
(General Testing Tasks)
TD286

TD386

TDH386.SYS
TDSTRIP

TDUMP

TDMEM

TDDEV

TDRF

TDREMOTE

TDINST

Produce sign-off checklist

80

? TDW Testing

(General Testing Tasks)
TDDEBUG.386

WREMOTE

WRSETUP

Produce sign-off checklist
Track SVGA DLL development

? Profiler Testing

(General Testing Tasks)

TPROF

TPROFW

TF386

Produce sign-off checklist
Produce feature outline

Review automation coverage
Verify timing statistics

Collect very large applications
Identify & support in-house users
Identify & support key beta sites
Develop TFSMERGE program

? Automationl (lead)

Produce ~600 new tests to satisfy test matrix
Produce 16-bit debugger feature outline
Assist in producing overall test matrix
Produce next generation C++-based test control
system

Produce feature coverage viewer program
Produce Monkey-based acceptance suite for
Purart

Convert smart-script system to Alverex tools
Maintain DCHECK & TCHECK

Automation2 (support)

Execute all automation and generate reports

Fix tests that break in old test system (500 total)
Generate BTS reports weekly

Adapt test system to OS/2

Adapt test system to NT

Produce ~600 new tests to satisfy matrix
Recompile test attachments with new compiler
Perform compatibility testing

Diablo1 (process control)
Diablo2 (data inspect)
Diablo3 (general functions)

TASM Testing



James Bach and Geordie Keitt
v.712 1/3/2007 124200 AM 81
jpoe-scenarios.doc

PROCHAIN ENTERPRISE

Scenario Test Plan

Scenario testing is about how the product behaves when subjected to complex sequences of input that mirror how it
was designed to be used, as well as how it might realistically be misused. A scenario, in this context, is a story about
how the product might be used. Through scenario testing we hope to find problems that lie in the interactions among
different features, and problems that are more important because they occur during particularly common or critical
flows of user behavior.

This document describes an exploratory form of scenario testing. Our documentation philosophy is based on that of
the General Functionality and Stability Test Procedure (see http://www satisfice.com/tools/procedure.pdf) used by
Microsoft’s compatibility test group and in Microsoft’s Certified for Windows logo program. In this process, scenario
test charters are produced, and those charters (which could also be described as very high level test procedures) are
used to guide scenario tests performed by experienced users.

Status: We have collected a lot of scenario ideas and data. We are about a third of the way through the process of
documenting it, but we have already begun the test process.

Scenario Charter Design Process

Good scenario test design requires knowledge of the purposes that the product serves and the context in which it is
used. So, we used two Prochain staff consultants and the author of the user documentation as domain experts to help
produce the scenarios. Scenario design included these activities:

m  User documentation exhibits. Review documentation provided by friendly customers and the
development team. Such documentation describes how Prochain Enterprise is used by various kinds of users,
including step-by-step instructions for updating data in the system.

m  Facilitated brainstorm with domain experts. Review goals and patterns of scenario testing, then
brainstorm test ideas. These ideas may include standalone elements to be incorporated into scenarios, as well
as fully worked scenario scripts, with variations.

m  Chartered exploratory test sessions. Pick a couple of mainstream scenario ideas and conduct
exploratory test sessions, using domain experts as testers. In these sessions, follow a scenario theme,
developing it further while recording what each tester did using both automatic recorders and personal
observation. All the testers should use the same database to gain the benefit of implicit multi-user testing.
While some testers coordinate with each other to flesh out the scenarios, others assist in taking notes or
investigating problems.

m  Scenario refinement. Once scenarios are roughed out, discuss, prune, and extend them. Look for missing
elements, and compare them with user documentation exhibits.

m  Function tracing. Compare the scenarios to the features of the product to assure that we have scenarios
that, in principle, cover all the functions of the product.



Scenario Design Elements 82

During our design process, various elements of scenarios were identified, and we used these ideas to design the
present scenario set. Further development of the scenarios might benefit by taking these ideas into account and
extending them.

Activity Pattems

These are used as guideword heuristics to elicit ideas for deepening and varying the activities that constitute the
scenario charters.

Tug of war; contention. Multiple users resetting the same values on the same objects.

Interruptions; aborts; backtracking. Unfinished activities are a normal occurrence in work environments
that are full of distractions.

Object lifecycle. Create some entity, such as a task or project or view, change it, evolve it, then delete it.

Long period activities. Transactions that take a long time to play out, or involve events that occur
predictably, but infrequently, such as system maintenance.

Function interactions. Make the features of the product work together.

Personnas. Imagine stereotypical users and design scenarios from their viewpoint.

Mirror the competition. Do things that duplicate the behaviors or effects of competing products.
Learning curve. Do things more likely to be done by people just learning the product.

Oops. Make realistic mistakes. Screw up in ways that distracted, busy people do.

Industrial Data. Use high complexity project data.

Scenario Personnas

Individual Contributors. Individual contributor scenarios involve updating tasks and viewing task status.

Analysts (e.g. critical chain experts, resource managers, consultants). Analyst scenarios focus on
viewing and comparing tasks and projects, using the reporting features, and repeatedly popping up and
drilling down.

Managers (e.g. task managers, project managers, senior management). Management scenarios
involve analysis, but managers also coordinate with individual contributors, which leads to more multi-user
tests. Managers update buffers and may download schedules and rewire them.

System Administrators. System administration scenarios involve the creation and removal of users, rights
setting, system troubleshooting and recovery.



Test Dimensions

To test Prochain Enterprise effectively, all of the following variables must be considered, controlled and
systematically varied in the course of the testing. Not all scenarios will specify all of these parts, but the testers must
remain aware of them as we evaluate the completeness and effectiveness of our work.. Some of these are represented
in the structure of the scenario charters, others are represented in the activities.

Date. Manipulation of the date is important for the longer period scenario tests. It may be enough to modify
the simulation date. We might also need to modify the system clock itself. Are we varying dates as we test,
exploring the effects of dates, and juxtaposing items with different dates?

Project Data. In any scenario other than project creation scenarios, we need rich project data to work with.
Collect actual industrial data and use that wherever possible. Are we using a sufficient variety, quantity and
complexity of data to approximate the upper range of realistic usage?

User Data. In any scenario other than system setup, we need users and user rights configured in diverse and
realistic ways, prior to the scenario test execution. Are enough users represented in the database to
approximate the upper range of realistic usage? Is a wide variety of rights and rights combinations
represented? Is every user type represented?

Functions. Capability testing focuses on covering each of the functions, but we also want to incorporate
every significant function of the product into our set of scenario tests. This provides one of the coverage
standards we use to assess scenario test completeness: Is every function likely to be visited in the course of
performing all the scenario tests?

Sequence. The specific sequence of actions to be done by the scenario tester is rarely scripted in advance.
This is because the sheer number of possible sequences, both valid and invalid, is so large that to specify
particular sequences will unduly reduce the variety of tests that will be attempted. We want interesting
sequences, and we want a lot of different sequences: Are testers varying the order in which they perform the
tasks within the scenario charters?

Simultaneous Activity and States. Tests may turn out differently depending on what else is going on in
the system at any given moment, so the scenario tests must consider a variety of simultaneous event tests,
especially ones involving multi-user contention. Are the testers exploring the juxtaposition of potentially
conflicting states and interactions among concurrent users?

System Configuration. Testing should occur on a variety of system configurations, especially multi-server
configurations, because the profile of findable bugs may vary widely from one setup to another. Are scenario
tests being performed on the important configurations of Enterprise?

Oracles. An oracle is a principle or mechanism by which we recognize that a problem has occurred. With a
bad oracle, bugs happen, but testers don’t notice them. Domain experts, by definition, are people who can
tell if a product is behaving reasonably. But sometimes it takes a lot of focus, retesting, and special tooling to
reliably detect the failures that occur. For each scenario, what measures are testers taking to spot the
problems that matter?

Tester. Anyone can perform scenario testing, but it usually takes some domain expertise to conceive of
activities and sequences of activities that are more compelling (unless it’s a Learning Curve scenario).
Different testers have different propensities and sensitivities. Has each scenario test been performed by
different testers?

83



Scenar mames

This is our first cut at a fundamental set of scenario themes. Each sub-theme listed below stands alone as a separate
scenario test activity. They can be performed singly, or in combination by a test team working together.

m  Project Update

- UP1: Check tasks and update.

- UP2: Check status and perform buffer update.

- UP3: Check out a project and rewire dependencies.
- UP4: Troubleshoot a project.

m  Project Creation
- CR1: Add projects, finish projects, observe impact.
- CR2: Set project views, attachments, and checklists.

m  System Administration

- SA1: Administration setup and customization.
- SA2: Rescale the configuration.



PROCHAIN ENTERPRISE SCENARIO TESTING

Scenario Testing Protocol and Setup

Mission

Find important bugs quickly by exploring the product in ways that reflect complex, realistic, compelling usage.

Testers

As arule, the testers should understand the product fairly well, though an interesting variation of a scenario
can be to direct a novice user to learn the product by attempting to perform the scenario test.

The testers should understand likely users, and likely contexts of use, including the problems users are trying
to solve by using the product. When testers understand this, scenario testing will be a better counterpoint to
ordinary function testing.

The testers should have the training, tools, and/or supervision sufficient to assure that they can recognize and
report bugs that occur.

Setup

Select a user database & project database that you can afford to mess up with your tests.

Assure that the project database has at least two substantial projects and program in it, preferably more. The
projects should include many tasks, statuses of green/yellow/red, and multiple buffers per project.

Tasks should have variety, e.g. short ones, long ones, key tasks, non-key tasks, started, not-started, with and
without attachments and checklists.

Set the simulation date to intersect with the project data that you are using.

Fulfill the setup requirements for the particular scenario test you are performing.

Activities

In exploratory scenario testing, you design the tests as you run them, in accordance with a scenario test charter:

Q
Q

O

Select a scenario test charter and spend about 90 minutes testing in accordance with it.

Perform the activities described in the test charter, but also perform variations of them, and vary the sequence
of your operations.

If you see something in the product that seems strange and may be a problem, investigate it, even if it is not in
the scope of the scenario test. You can return to the scenario test later.

Incorporate micro-behaviors freely into your tests. Micro-behaviors include making mistakes and backing up,
getting online help in the middle of an operation, pressing the wrong keys, editing and re-editing fields, and
generally doing things imprecisely— the way real people do.

Do things that should cause error messages, as well as things that should not.

Ask questions about the product and let them flavor your testing: What will happen if I do this? Can the
product handle that?

Consider working with more than one tester on more than one scenario. Perform multiple scenarios together.

Remember to advance the timeline periodically, either using the simulation date or using the system clock.

Oracle
Notes

Review the oracle notes for the scenario charter that you are working with.

Review and apply the HICCUPP heuristics.

For each operation that you witness the product perform, ask yourself how you know that it worked correctly.
Perform some operations with data chosen to make it easy to tell if the product gave correct output.

Look out for progressive data corruption or performance degradation. It may be subtle.

Reporting

Make a note of anything strange that happens. If you see a problem, briefly try to reproduce it.
Make a note of obstacles you encountered in the test process itself.

Record test ideas that come to you while you are doing this, and pass them along to the test lead.




PROCHAIN ENTERPRISE

SCENARIO TEST CHARTER

UP1: “Check tasks and update”

Theme

You are an individual contributor on a project. You have tasks assigned to you. Check your tasks and update them.
Check the status of tasks that gate the ones you are responsible for.

Setup

Assure that your user account(s) are set up with rights to access a project that has many tasks assigned to it.

Activities

Go to Tasks panel and filter tasks for ones assigned to you. (Alternatively, filter in other ways such as by
project or by incomplete tasks; and choose a way to sort)

Select one of the task list views and visit each task. Set the task filter to show, at least: actual start, total
duration, and remaining duration.

For some tasks, view details, checklists, and attachments.

Update each task in some way, including:
- Noupdate
- “Mark as Updated”
- Shorten duration remaining
- Set remaining duration to zero; or “Mark as Completed”
- Increase duration remaining
- Provide comments; update checklist
- Undo some updates

Refilter to see more tasks. Find tasks that feed into or lead from your tasks. Update some of those tasks.

Oracle
Notes

View updated tasks prior to buffer update to verify they have been updated properly.
View updated tasks affer buffer update to verify they are correct.

Verify that an updated task says “started” or where applicable verify that it has become a key task or that it
has ceased to be a key task.

Determine the total number of tasks visible within MS project file, and verify all are visible in Enterprise.

Variations

USER DATA: Restrict the rights of the user account to the maximum degree while still being able to
perform the activity.

TUG OF WAR: log in as a second user and re-update the same tasks, or cancel updates; log in as the same
user as if you forgot you already had another window open, then make changes in both windows.

OOPS: update the wrong task and then undo the update; update a task, wait for buffer update, then realize
you screwed up and try to fix it.

INTERRUPTION: Try to make updates while a buffer update is going on.

LIFECYCLE: Update a fresh task, update it several more times, advancing the simulation date, then mark it
as completed. Do that for an entire project. Mark all tasks as completed.

86



PROCHAIN ENTERPRISE

SCENARIO TEST CHARTER

UP2: “Check status and perform buffer update”

Theme | youarea project manager. You need to update your project to prepare your weekly report on project status.
Setup | - Log in with a user account set up with project manager rights.
- Buffer consumption for one of the projects should ideally be in the yellow or red.
- Atleast some of the projects should have multiple project buffers.

Activities | O View the Standard Projects Status Chart (or custom chart), filter on a set of projects (and turn on name labels).
Start a second session in a window next to the first one (log in as the same user), and filter for the same project
set. Now you have two project status charts that you can compare.

U Pick one project as “yours”. Now, compare status history of your project to others. Explore the other project
details in any way necessary to account for the differences in status.
U View all impact chains for your project, and for some of those tasks:
- view task details
- view task links
- view task load chart
O  If other testers are making task updates during your test session, review those changes and modify some of
them, yourself. Otherwise, make at least a few updates of your own.
U Advance the clock by a few days, update buffers on your project and view again the status chart and impact
chains, then advance the clock again by another few days.
U Search for all project tasks that have not been updated in more than a “week” (i.e. since the test began).
Update some of them, then perform another buffer update and view status history for that project.
Oracle | . view updated tasks prior to buffer update to verify they have been updated properly.
Notes | . iy updated tasks after buffer update to verify they are correct.
- Verify that an updated task says “started” or where applicable verify that it has become a key task or that it
has ceased to be a key task.
- Determine the total number of tasks visible within MS project file, and verify all are visible in Enterprise.
- Verify the reasonableness of the impact chains, updates to the impact chains, and status history.
Variations | . SER DATA: superuser “accidentally” changes your user permissions during the test so that you can no
longer change your own project.
- TUG OF WAR: a second user logs in and checks out the project that you are analyzing, locking it.
- OOPS: update project notes and comments in the wrong project, and try to remove them and apply them to
the right project.
- INTERRUPTION: Periodically click on the printer icon.

87



PROCHAIN ENTERPRISE

SCENARIO TEST CHARTER

UP3: “Check out a project and rewire dependencies”

Theme | Youare aproject manager. Your project has changed as a result of new technology or new resources, and the
current network needs to be updated.
Setup | - Log in with a user account set up with project manager rights.
Activities | H Pick a project as “yours”. Check out the project file to your local hard drive.
U Update the project network in MSP, do a selection of the following:
- Add new tasks that have starting dates before the present date, some that span the present date,
and some that end in the future.
- Add new tasks that are not on the critical chain, and some that are.
- Delete some tasks.
- Modify data in custom fields.
- Change some of the task linkages.
- Reassign resources; Overload some resources.
- Ifthe project has one endpoint, add a second endpoint; if it has two multiple endpoints, remove
all but one.
(remember to keep track of the changes you make!)
O Check the project back into PCE, and update buffers.
O View all impact chains for your project, and for the tasks and chains that you modified:
- view task details
- view task links
- view task load chart
Oracle | - Thenew network’s info are correctly represented in PCE:
- buffer consumption
Notes - impact chain
- key tasks
- resources and managers
- On check-in PCE should force a buffer update.
Variations | - TUG OF WAR: A second user logs in and checks in the project while you are changing it.
- OOPS: Check in the wrong project file, and then try to recover.
- OBJECT LIFECYCLE: Rewire the project several times, interspersing that with UP1 an UP2 scenarios.
Then complete all tasks.

88



89

OWL Quality Plan

Final

This document incorporates all previous Elvis quality assurance documents. It is an analysis of
the tasks necessary to assure quality for Elvis. It has been reviewed by Tech. Support, and
reflects the concerns of our customers.

This document includes the following sections:

« Risk and Task Correlation
« Component Breakdown
« Ongoing Tasks

Resource loading and open issues are not included, due to time constraints, and the need for
broader review by management.



Risk and Task Correlation

This table relates risk areas to specific quality assurance tasks. Any tasks listed on the right which are not completed
will increase the likelihood of customer dissatisfaction in the associated risk area on the left.

Source Code Usability e Review code for comments, style, formatting, and
comprehensibility.

e Review makefiles for simplicity, documentation, and
consistency.

Performance e Benchmark performance of low level encapsulation and high-
order functionality versus

OWL 1.0x
MFC
Native Windows apps

e Actively solicit Beta tester feedback, design questionnaire,
tabulate/analyze results.

Internationalization e Verify international enabling of the following:

Stored strings (window titles, diagnostics, etc.)
Menus items and accelerators

Cutting and pasting text (clipboard support)
Printing

Localized versions of common dialogs

Status line code

Input validation (proper uppercasing, etc.)
filenames/streaming

Design Quality e Inspect code for appropriate use of C++ idioms.

e Participate in discussions to promote:

Design simplicity

Backward compatibility
Appropriate feature set
Flexibility for future technologies

Documentation Quality
Reference Guide

Confirm API coverage with latest available header files.
Ch