
June 1999 113

So
ft

w
ar

e
Re

al
iti

es

I
n Reframing Requirements Analysis
(Computer, Feb. 1999, pp. 120-122),
I proposed that requirements devel-
opment is not something that hap-
pens all at once at the start of a pro-

ject. In real life, requirements are nego-
tiated in the course of two simultaneous
dialogues throughout the project life cy-
cle. Those dialogues entail asking, “What
do we want?” and “What can we build?”

The quality of these dialogues goes a
long way to determining the ultimate
quality of the product. After reading that
column, Jerry Weinberg e-mailed me the
gentle criticism that the example I used
(a file conversion tool) was too simplis-
tic to illustrate the requirements testing
problem effectively. What about safety-
critical or otherwise complex products?
Since Jerry co-authored, with Don
Gause, my favorite book about require-
ments, Exploring Requirements: Quality
Before Design (Dorset House, 1989), I
feel compelled to address that problem
and expand upon the role of testing in
requirements development.

I define requirements as the set of ideas
that collectively define quality for a par-
ticular product. I define testing as a
process of developing an assessment of
product quality. First, I’ll reframe the
requirements testing problem in terms of
risk, and then I’ll show what happens in
complex or high-risk situations.

RISK AND REQUIREMENTS TESTING
There are at least four alleged truisms

about testing a product against require-
ments. Most of the testing textbooks on
my bookshelf promote these principles,
and each principle reflects some truth
about the dynamics of testing.

1. Without stated requirements, no test-
ing is possible.

2. A software product must satisfy its
stated requirements.

3. All test cases should be traceable to
one or more stated requirements,
and vice versa.

4. Requirements must be stated in
testable terms.

When we think in terms of risk, however,
I believe a richer set of ideas emerges.

Testing without stated requirements
If it is very important to satisfy a

requirement, and it is the job of the tester
to evaluate the product against that re-
quirement, then clearly the tester must be
informed of that requirement. So there
are situations where this statement is basi-
cally true.

The deeper truth is that stated require-
ments are not the only requirements.
Because of incompleteness and ambigu-
ity, testing should not be considered
merely as an evaluative process. It is also
a process of exploring the meaning and
implications of requirements. Thus, test-
ing is not only possible without stated
requirements, it’s especially useful when
they’re not stated. I think we need to
break out of the mythology that testing is
some kind of robotic process. Tre-
mendous value comes from testers and
developers collaborating. Skilled testers
evaluate the product against their under-
standing of unstated requirements and
use their observations to challenge or
question the project team’s shared under-
standing of quality.

A good tester stays alert for uninten-
tional gaps in the stated requirements, and
works to resolve them to the degree justi-
fied by the risks of the situation.

Satisfying stated requirements
The idea that a software product must

satisfy its stated requirements is true if we
define product quality as the extent to
which we can reasonably claim that each
stated requirement is a true statement
about the product. But that depends on
having a very clear and complete set of
requirements. Otherwise, you’re locked
in to a pretty thin idea of quality.

The deeper truth is that while quality
is defined by requirements, it is not
defined as the mere sum of “satisfied”
stated requirements. There are many
ways to satisfy or violate requirements.
Requirements are not all equal in their
importance, and often they are even in
conflict with each other. It unnecessarily
limits us to think about requirements as
disconnected ideas, subject to a Boolean
evaluation of true or false.

A broader way to think about satisfy-
ing requirements is to turn our thinking
around and consider the risk associated

Risk and
Requirements-
Based Testing

James Bach, Independent Consultant

Editor: James Bach, 1198 South Fork Dr.,
Front Royal, VA 22630; voice (540) 631-0600;
fax (540) 631-9264; j.bach@computer.org

I think we need to
break out of the
mythology that

testing is some kind
of robotic process.

James Bach
Copyright (c) 1999, IEEE Computer SocietyAuthor Contact: j.bach@computer.org

114 Computer

Software Realities

with violating them. Good testers strive
to answer the question, “What impor-
tant problems are there in this product?”

Tracing test cases to requirements
To the extent that requirements matter,

there should be an association between
testing and requirements. But talk about
traceability so often boils down to a form
of clerical Bingo: “For each requirements
ID, list the test case IDs that relate; for each
test ID, list the requirement IDs that
relate.” The completeness of testing is then
presumably evaluated by noting that at
least one test is associated with each
requirement. This is a pretty idea, yet I’ve
seen projects where this checkbox trace-
ability was achieved by defining a set of test
cases consisting of the text of each require-
ment preceded by the word “verify.”

If the intent of the traceability principle
is to demonstrate that the test strategy has
validated the product against require-
ments, then we have to go deeper than
checkbox tracing. We should be ready for
our clients to ask the question, “How do
you know?” We should be able to explain
the relationship between our tests and the
requirements. The fact that a requirement
is merely associated with a test is not inter-
esting in and of itself. The important thing
is how it is associated, and that impor-
tance grows in pace with product risk.

Stating requirements
in testable terms

It’s important that requirements be
meaningful. However, “testable” in this
context is usually defined as something like
“conducive to a totally reliable, noncon-
troversial, and observer-independent mea-
surement that results in a true-or-false
determination of compliance.” Sometimes
this point is emphasized with a comment
that unless we are able to measure success,
we will never know that we’ve achieved it.

To penetrate to the deeper truth, first
recognize that testers, far from being
drones, are blessed with normal human
capabilities of discernment and inductive
reasoning. A typical tester is capable of
exploring the meaning and potential
implications of requirements without nec-
essarily being fed this information from
an eyedropper like some endangered baby
condor. In fact, attempts to save testers the

trouble of interpreting requirements by
simplifying requirement statements to a
testable scale may make matters worse.

Here’s a real-life example: “The screen
control should respond to user input
within 300 milliseconds.” I once saw a
test designer fret and ponder over this
requirement. She thought she would
need to purchase a special tool to mea-
sure the performance of the product
down to the millisecond level. She wor-
ried about how transient processes in
Windows could introduce spurious vari-
ation into her measurements. Then she
realized something: With a little prepa-
ration, an unaided human can measure
time on that scale to a resolution of plus
or minus 50 milliseconds. Maybe that
would be accurate enough. It further
occurred to her that perhaps this require-
ment was specified in milliseconds not to
make it more meaningful, but to make it
more objectively measurable. When she
asked the designer, it turned out that the
real requirement was that the response
time “not be as annoyingly slow as it is
in the current version of this product.”

Thus we see that the pragmatics of
testing are not necessarily served by
unambiguous specification, though test-
ing is always served by meaningful com-
munication.

REQUIREMENTS, TESTING,
AND CHALLENGING SOFTWARE

I reformulate the principles above into
the following, less quotable but more
robust, guidelines:

1. Our ability to recognize problems in
a product is limited and biased by
our understanding of what problems
there could be. A requirements doc-
ument is one potential source of
information about problems. There
are others.

2. We incur risk to the extent that we
deliver a product that has important
problems in it. The true mission of
testing is to bring that risk to light,
not merely to demonstrate confor-
mance to stated requirements.

3. Especially in high-risk situations, the
test process will be more persuasive
if we can articulate and justify how
test strategy relates to the definition

of quality. This goes beyond having
at least one test for each stated
requirement.

4. The test process will be more effec-
tive if requirements are specified in
terms that communicate the essence
of what is desired, along with an idea
of risks, benefits, and relative impor-
tance of each requirement. Objective
measurability may be necessary, in
some cases, but is never enough to
foster robust testing.

What happens when these principles are
applied to high-risk or complex soft-
ware? First, let me disclaim any and all
concern about requirements and testing
processes performed for reasons other
than creating a quality product. For the
purpose of this column, all the require-
ments documentation done simply to
pass a process audit is of no consequence.
Don’t confuse that with what must be
done to produce a quality product.

As risks and complexities increase, par-
ticipation by testing in the requirements
dialogue becomes more important if the
test process is going to achieve its mission.
More testing skill is needed, as is a better
rapport with the development and user
communities. In the dialogue about what
we want, testers should seek multichannel
communication: multiple written sources,
diagrams, demos, chalk talks, and use
cases. In the dialogue about what can be
built, testers should be familiar with the
technologies being used, and work with
development to build testability enhanc-
ing facilities into the product.

Throughout the process, the tester
should raise an alarm if the risks and
complexities of a project exceed his or
her capability to test.

T here is nothing in the reformulated
guidelines that suggests require-
ments must be made absolutely

clear and precise. What these guidelines
emphasize is the importance of manag-
ing the relationship between risk and a
shared understanding of what quality
means for your product. If you are on a
challenging project and are managing
risks and requirements, clarity and pre-
cision will emerge naturally. ❖

