
 1 

Rapid Testing for Rapid Maintenance 
Version 1.2, 4/25/19, by James Bach (first published in TASSQuarterly Magazine, 9/06)1 

 

 

A correspondent writes: 

 

"I have a test management problem. We have a maintenance project. It contains about 20 

different applications. Three of them are bigger in terms of features and also the specs 

that are available. I am told that these applications had more than 1-2 testers on each of 

these applications. But in this maintenance project we are only 6-7 testers who are 

responsible to do the required testing. There will be a maintenance release every month 

and what it will deliver is a few bug fixes and a few CRs. What those bugs and CRs would 

be is not known in advance. Could you please suggest how to go about managing such 

kind of assignment?" 

 

Okay, this is what I would call a classic rapid testing situation: lots of complexity, not a 

lot of time or people. 

 

In tackling this problem, first I would analyze the context. Many images leap to mind 

when I hear words like "application" and "maintenance" and "CR" (that means change 

request, right?), but these images may be mistaken. I typically refer to a diagram called 

the Context Model (https://www.satisfice.com/download/rapid-software-testing-context-

model) to help me think this through. In this case, the factors foremost in my mind are the 

following: 

 

Consider your mission. What specifically do your clients expect from you? Do they 

need you to find important bugs quickly, or are there also other requirements such as the 

use of certain practices and tools, or the production of certain documentation? (This is 

important for two reasons: it may be that there is no way for you to achieve the mission 

in your situation, in which case you'll need to renegotiate it; also, clarity of mission helps 

you avoid doing anything that isn't necessary to do. In your situation, you don’t have the 

luxury of putting your process on the cruise control of unexamined assumptions.) 

 

Consider the quality goal. How important is the product? What if you miss a bug? 

Are the customers of this product very sensitive to problems, or are they tough computer 

geeks who don't mind a little crash once in a while? Do these products have the capacity 

to harm anyone if they fail? Apart from the general “level of quality” you are testing for, 

have you considered the different types of quality (reliability, usability, compatibility, 

performance, etc.)? (This is important because higher risk justifies and demands a more 

expensive and meticulous testing approach.) 

 

Consider your team. Are your testers interested and able to do exploratory testing 

under pressure? Do they understand the products already or do they need to climb the 

learning curve rapidly? Also, are there any people not on the testing team who might be 

                                                 
1 Thank you Mike Kelly and Cem Kaner for indispensible comments! 

https://www.satisfice.com/download/rapid-software-testing-context-model
https://www.satisfice.com/download/rapid-software-testing-context-model


 2 

able to help test, such as tech support or documentation people? Even friendly users in 

the field might be able to help. (This is important because I suspect that this situation will 

call for some creative and intensive testing by skilled testers. Testers who prefer to be 

spoon-fed rote test cases will probably be miserable. Furthermore, the situation is not 

necessarily easier if you are merely maintaining existing tests and test infrastructure that 

someone else has handed you— because you need to master those materials, and you 

may need to throw them out as obsolete or inadequate.) 

 

Consider your test lab and materials. Do you have equipment, tests, test data, 

automation, or anything else that will help you retest the products over time? For 

instance, do you have a test coverage outline, which is much more flexible than a set of 

test cases? (This is important because if you have existing tests or test documentation, 

then you have to figure out if it's actually helpful. Possibly the old tests weren't very 

good. Maybe the existing automation is broken and not worth fixing. Take stock of your 

testing infrastructure.) 

 

Consider the overall testability of the products. Are these applications 

conceptually easy to test or difficult to test? (see my Heuristics of Testability document 

for more ideas on this, at https://www.satisfice.com/download/heuristics-of-software-

testability) Can the programmers make them easier to test by adding logging, or 

scriptable interfaces? How much is there to test? Are the products modular, such that a 

problem in one part won't necessarily affect other parts? (This is important because 

testability is critical to the consistent success of meagerly staffed test project.) 

 

Consider systemic obstacles to rapid testing. Is there anything about the 

applications or your project that poses a predictable obstacle to testing? For instance, if 

they are mainframe-based batch processing systems, there may be a fixed and irreducible 

delay between starting a test and finishing it. If your programmers are working 10,000 

miles away, or if the build process takes 48 hours, then the turnaround time to deal with 

problems is not going to be good. (This is important because you need to set expectations 

and negotiate agreements to mitigate the effects of these obstacles.) 

 

Consider stability. Are these applications brittle or supple? Is it likely that the 

maintenance process will create more problems than it fixes? Are there robust unit tests, 

for instance? Are components used that don’t change and that you trust so much they can 

be considered as “already tested”? (This is important because when programmers are 

working with a stable code base and when they do reasonable unit tests, the probability 

of a bad bug reaching you is lower, and it will require less effort for you to reach a level 

of comfort about the status of the product during your testing.)  

 

Consider the cohesiveness of the product line. Are these twenty applications 

completely separate, or do they interact and share data or components? Is there a flow of 

data among the individual applications? (This is important because a cohesive, highly 

integrated set of applications can be tested together and against each other. The output 

of one may validate the output of another. The flipside of that is the increased chance of a 

fix in one causing a problem in the other.) 

https://www.satisfice.com/download/heuristics-of-software-testability
https://www.satisfice.com/download/heuristics-of-software-testability


 3 

 

Consider the availability of good oracles. How easy is it to validate that the 

outputs of a product are correct, or at least, sane? Will a bad problem also be an obvious 

problem, or is it possible that bad problems can occur in testing, but not be noticed by the 

tester? (This is important because you may need to invest in tools, training, or reference 

materials to assure that you will spot a problem that does, in fact, occur.) 

 

Consider the development process. How and when will decisions be made about 

what to fix and what to change? When will you get the new builds? Can you get detailed 

information about specifically what has changed? Will testing have a voice in this? Are 

you in good communication and reputation with the programmers? Can you review the 

testing done by developers to see whether you can skip or minimize that sort of testing in 

your own strategy? (This is important because considering yourself as part of a combined 

quality creating and witnessing effort helps you optimize your work. Also, you can test 

the product better when fixes are made with testing requirements in mind. You won't be 

blindsided if you are involved in those discussions.) 

 

These considerations are part of understanding the general lay of the testing situation. As 

a result of thinking these things through, I’m sure I would have in mind some issues to 

raise with management and the programmers. In any case, the following is my first 

impression based on your question. You can consider this my default mental template for 

dealing with this kind of test project, subject to amendment based on what I discover 

from learning about the issues, above: 

 

◼ The solution is probably not heavily documented manual test procedures. Those 

are expensive to produce, expensive to maintain, and do little to help test a 

complex product. They are favored by managers who don't understand testing and 

large consulting companies who get rich by exploiting the ignorance of said 

managers. See almost any military software test plan for an illustration of this sad 

principle. See any test plan afflicted with Sarbanes-Oxley syndrome. 

◼ If your products have a rich user interface, and if that interface is subject to 

change, then automation is probably not going to be a big part of your solution. It 

is a sisyphusian task of scripts breaking and being repaired again, and the 

automated checks you create would be pretty simplistic. However, if I did have a 

programmer available who enjoyed automation, I would look for low cost, simple, 

quick uses of tools to help the testing. That could mean creating a tool to create 

test data, or to do some relatively simple user simulation. If the system has an API 

you are in much better shape, and I would make use of that. See my paper on this 

for details (https://www.satisfice.com/download/a-context-driven-approach-to-

automation-in-testing 

◼ The solution probably does involve vigorous and targeted interactive testing that 

is especially exploratory. This means that you do not script tests in detail, in 

advance of performing them. Certainly you prepare to test the products, but your 

preparation is primarily in the form of preparing test data, test platforms, test 

tools, concise test strategy and test outline documents, and learning what you can 

about each product.  

https://www.satisfice.com/download/a-context-driven-approach-to-automation-in-testing
https://www.satisfice.com/download/a-context-driven-approach-to-automation-in-testing


 4 

◼ Locate a calendar. Lay out the milestone dates. What do those dates mean? Are 

they release to manufacturing or final customer ship dates? Work backwards from 

those dates. What is the last moment that you can receive an acceptable build and 

still render a decent test report so that your clients can decide to release it on 

time? A test cycle is the set of activities you perform from the time you get a 

build to the time you feel you have fulfilled your testing mission with that build. 

Now, consider thinking in terms of four kinds of test cycle: full, incremental, spot, 

and emergency. A full test cycle is what you do when the product comes to you 

after being destabilized with disruptive changes. You need to estimate how long 

that takes for each application. An incremental test cycle is what you do when the 

product comes to you with minor or carefully targeted changes. That should take 

much less time. A spot cycle is what you do when a developer wants your team 

(or someone on your team) to take a quick informal look at something he’s done, 

prior to “official” testing of a “formal” build. An emergency cycle is what you do 

when a fix must be made at the last minute, or when there is otherwise very little 

time to react. Look at the calendar and try to get an idea for how many test cycles 

you will be facing per release. When will they probably be? What delays will 

accompany them? Are changes going to dribble in, or will most of them be made 

all at once? 

◼ As for your test cycle strategy, you need to develop the equivalent of a two-

minute drill for each product; a well-organized test cycle. When a fix or fixes 

come down the pipe, you should have someone testing that specific change within 

a few minutes, and you should have preliminary test results within a few minutes 

to an hour after that. You achieve this by the approach of testing by skilled testers. 

Assign the products to the testers such that each tester has a few products that 

they are required to master. Everyone should be up to speed on each product, but 

for each product there should be a responsible tester who coordinates all testing 

effort. A responsible tester must be reasonably skilled, so depending on your 

team, you may be the only responsible tester who supervises the other supporting 

testers (who may in turn be part-timers or developers pitching in to help). 

◼ …or maybe fixed obstacles to rapidity make a “two-minute drill” impossible. In 

that case, you still need to find ways to minimize potential delays, perhaps by 

acquiring the equipment to make long test runs parallel instead of serial, or by 

piling more value into each test activity through improved preparation. 

◼ If your products are not easy to install, you need to work on that problem. You 

can’t afford to waste hours after the build just trying to get the products up and 

running. Remember: two-minute drill. Hup hup. When a product is released to 

your team, they should start exploring it like snakes on plane. 

◼ Make a set of product coverage outlines that address all your products. A product 

coverage outline is literally an outline of the structures, functions, and data that 

you might need to cover when testing those products. Start with something no 

more than, say, two pages long per application. Use Notepad, Excel, or some 

other very low formatting method of documenting it. Exotic formatting just slows 

you down. Use these outlines to plan and report your testing on the fly. (Use the 

Heuristic Test Strategy Model, available at 



 5 

https://www.satisfice.com/download/heuristic-test-strategy-model, to help 

produce these outlines. An example outline for a game called “Putt Putt Saves the 

Zoo” can be found in the appendices to my RSTE class, at 

https://www.satisfice.com/download/rst-appendices.) 

◼ Make a list of risks for each application. By risks, I mean, what kind of bugs 

would be most worrisome if they were to creep into those products? For instance, 

for Microsoft Excel, I would think "math error" would be high on the list. I would 

need to have tests for mathematical correctness. (The Heuristic Test Strategy 

Model will help here, too, and you will find two specific articles about identifying 

risks in software in the appendices to my RSTE class.) 

◼ Make a one or two-page outline of your test strategy. This is a list of the kind of 

test activities you think need to be done to address the major risk areas. Be as 

specific as you can, but also be brief. Brevity is important because you need to go 

over this strategy with your clients, and if it's just a page or two long, it will be 

easy to get a quick review. (See examples of test documentation and notes in the 

appendices of my RSTE class.) 

◼ In producing your test strategy, look for test tools, techniques, or activities that 

might be able to test multiple products in the same activity. If your products are 

part of an integrated suite, this will be much easier. I would focus on scenario 

testing as a principle test development technique and given that this is a 

maintenance project, I suspect that parallel testing (whereby you test a product 

against its earlier version in parallel) will also be a bread-and-butter part of the 

strategy. 

◼ Seek variety and freshness in your testing. A risk with maintenance testing, 

especially under pressure, is that you lapse into following the same paths in the 

same way with the same data, cycle after cycle. This makes testing stale and 

minimizes the chance that you will find important bugs. Remember, you can’t test 

everything, so that’s why we need to take fresh samples of product behavior each 

time, if that’s feasible. Yes, you need to cover the same aspects of the product, 

again and again, but try to cover them with different tests. Use different data and 

do things in a different order. It also helps to use paired exploratory testing (two 

people, one computer, testing the same thing at the same time). Pairing injects a 

surprising amount of energy into the process… 

◼ … But although variety is important, it may be important for some tests to be 

repeated each test cycle in pretty much the same way. This can be useful if it’s 

difficult to tell whether a complicated set of output is correct. By keeping some 

tests very controlled and repetitive, you can directly compare complicated output 

from version to version, and spot bugs in the form of subtle inconsistencies in the 

output. Hence, you may need to prepare some baseline test data and test lab 

infrastructure and preserve it over time. 

◼ Brief your management and developers as follows: "I want to serve you by 

alerting you to every important problem in these products before those problems 

get into the field. I want to do this without slowing you down. If I'm going to do a 

good job with such a small staff, then I need to know about fixes and changes as 

https://www.satisfice.com/download/heuristic-test-strategy-model
https://www.satisfice.com/download/rst-appendices


 6 

early as possible. I need to be involved in these decisions so that I can let you 

know about possible difficulties in retesting. If you are careful about the way to 

change the product, and if you share with me details about the nature of each fix, 

my team can test in a much more targeted, confident fashion. In general, the more 

testable this product is, the more quickly I can give you a good report on the 

status of each change, so keep that in the back of your mind as you go. 

Meanwhile, I commit to giving you rapid feedback. I will do my best to keep 

testing out of the bottleneck." 

◼ You must develop skilled testers in your team if you don't already have them. I'm 

talking about tactically skilled testers: people who are comfortable with 

complexity, understand what test coverage is and what oracles are; people who 

can design tests to evaluate the presence of risk; people who can make 

observations and reason about them. To support this, I have videos on YouTube. I 

have lots of written training materials on my site, too. See also the various articles 

on my blog, or for that matter, see my book Lessons Learned in Software Testing. 

◼ If there isn’t already a bug triage process in your group, establish one. I suggest 

that you run those meetings, unless the program manager insists. You need to get 

good at making the case for bug fixes. I have prepared a cheat sheet to help test 

managers with this, you can find it as an appendix to my process evolution article 

at https://www.satisfice.com/download/process-evolution-in-a-mad-world, but it’s 

also included in the RSTE class appendices. 

◼ Establish a testing dashboard either online or, as I prefer, on a whiteboard. It 

should be something that expresses, at a glance, your testing status, and does so in 

a way to answers the most important management questions. See my presentation 

on a Low Tech Testing Dashboard on my site at 

https://www.satisfice.com/download/low-tech-testing-dashboard 

As you work through these ideas and activities— and you will revisit them frequently 

throughout your project— I recommend that you keep an issues list. The issues list is 

your repository of concerns and obstacles that you must resolve with your clients. Your 

clients want a service from you, and you want to provide that service. That means if 

anything threatens your ability to provide that service, you must raise those issues in a 

timely manner and on a regular basis. The resolution of an issue may be that your client 

accepts more risk; or perhaps they will provide you with more testers. These issues are 

arising more or less every day, however, and your job as a test manager will be to know 

what they are, explain them in specific, compelling language, and shepherd them to 

resolution. 

 

Yes, it’s a lot to think about, being a leader of a rapid test project. That’s probably why 

they put you in charge of it… or maybe because they have no idea what they were doing. 

Either way, how you meet this challenge will affect how you gain credibility in your 

project. The more credibility you have, the more you can influence your situation for the 

better. 

 

https://www.satisfice.com/download/process-evolution-in-a-mad-world
https://www.satisfice.com/download/low-tech-testing-dashboard

