By JamesBACH

OMEGA TESTER:
TESTING WITH A TEAM OF ONE

Like Charlton Heston
in the movie, the “omega

tester” must be canny
and resourceful. Hey, and
even on larger teams, your

different areas of the product,

all over the world. You may feel
alone, even on a big project.

Anything you do means something else won’t get done.

(Don'’t tell me you’re going to “multitask.” Multitasking is for managers and other people who don’t do anything
mentally demanding.) The moment you sit down and really focus on testing something, every other part of the
product, every communication, every other preparation or learning must be put on hold. While you are testing,
you are a single-threaded process, and the queue grows quickly while your head is down in your work.

You feel too busy to plan and prepare.

There may be manuals to read, developers and users
to interview, test tools and virtual test platforms
to configure. You need to learn enough about the
product to imagine the risks and get a picture of
your test strategy. On top of that, there are lots

of meetings you could and probably should go to.
But as soon as the product is in your hands, the
pressure will be on you to test now, now, now!
“Hey wait,” you say, “I'm on a Scrum project, we
take it one sprint at a time.” Yes, it would be nice
if your test preparation activities mapped to the
development process. But there’s no particular
reason why they should. Testing and development
are not symmetrical activities. A small amount of
development can create a huge test problem. For
instance, imagine that a developer slaps together

/| www.softwaretestpro.com

a database and sends it to you for testing. These
days that’s not a lot of work — for HIM; for you —
welcome to the House of Pain. You immediately
have the problem of creating a potentially large
and sophisticated test data set. Sure, you can skip
that step and just add a few records to test with.
That would be a start; but tell me — in what future
sprint will your job be to do the deep data testing?
They will always add something new, and you

will always be expected to jump on it. Developers
create functionality, but they also automatically
create performance problems, scalability problems,
reliability problems, usability problems, etc. They
create these problems for free (I've never seen “create
bugs” on a development schedule, yet there always
seem to be enough time to create them), but it isn’t
free for you to find them.

teammates may be working in

or your team may be spread out

You feel too busy to mind your
infrastructure.

As you test, you learn. You create files and take
crude notes. Your desktop becomes littered with
these things. This represents a kind of technical
debt that grows harder to support as the project
moves along. You need time to stop testing and

You feel too busy for curiosity.

Testing is a search process. Not only that, it’s a
heuristic search. That means there is no sure way
to find what we are looking for, and no optimal way
of searching for it. There are certain obvious kinds
of testing to do, but that’s not enough for excellent
testing. Excellent testing requires that you test
more than the obvious things in the obvious ways.
You must indulge your curiosity. You must play.

No one understands what you do.

Programmers and testers both do work that is
intangible. The difference is that programmers have
a tangible finale: the software. The end product of
testing is less tangible, and efforts to make it more
tangible mean spending less time actually testing.
Many people think testing is easy (“just try it and

TEAM

organize your notes, consolidate and organize your
test data, create a coverage outline or update your
risk lists. A good infrastructure for your test project
gives you efficiency, but you may feel that efficiency
is a luxury you can’t afford. Indeed, how many
firefighters, in the midst of a disaster, decide to
change the oil in the fire truck?

You must open yourself to the unexpected. For
many testers, this can be hard to justify (a lot of
my teaching and coaching focuses on solving that
problem). It looks like you are goofing off, instead
of doing important work. So, when the pressure is
on, curiosity is easy to put on the shelf. You then
become a little more like a fancy robot; a little less
like a powerful human tester.

so long to find those “obvious” bugs. At least if you
are in a team of testers, you can commiserate and
share the burden of explaining the impossibility
of complete testing for the 37th time. As an omega
tester, you just feel surrounded by monsters.

What to do about this? My omega tester suggestions

see if it works!”

Forget test cases and scripts.
Think test activities and the
testing story. I don’t think of
myself as creating test cases
when I work, I think of myself as
doing testing. Sometimes that
results in specific documentation
or some other sort of test artifact,
but not necessarily. Test cases
are not testing. Configuring the
product, operating it, observing it,
and evaluating it — that’s testing.
Because you’re overloaded, I
suggest thinking about your
strategy in terms of what you
need to do, or what you need to
create in order to do it. A detailed
documented test procedure is
usually neither of those things.
Focus on the activity of testing,
or think about the test report
you are trying to produce (it may
be an oral report), and you’ll get
more testing done.

) and they wonder why it takes you

Let risk be your compass.

A common test strategy practice
is to organize testing around a
standard, such as a specification
or requirements document.
Those things are important

but as an organizing principle

I suggest risk instead. By that

I mean focusing your testing

on the more important product
areas and looking for the more
important kinds of bugs. At first
you may not have a strong idea
about what the risks are, but
keep asking yourself “what are
the things we are most worried
about NOW?” and as the project
goes on you will learn this better.

Test in short, sharp,
uninterrupted sessions.

Session based testing means
that you set aside a block of time
— I prefer 90 minute blocks — put
a sign up at your desk that says

Volume 7 /

Issue 5 |/

consist of technical ideas and social ideas.

“Gone Bug Finding”. Pick a
risk or an area of the product
and test it. Record your testing
charter — a sentence or two
about the objective of the
session. This is important
because as a lone tester you
need to be more definite about
the progress you make. It’s too
easy to let email or meetings
drain all your time away and
find you’ve gone a whole day
without really testing anything.

Use unexpected lulls for
infrastructure, preparation, or
re-assessment. These lulls will
occur more or less regularly on
any project. I'm talking about
those times when you’re waiting
for a new build because they can’t
get the thing installed properly on
your test server, or any other time
when your testing is blocked. You
need to take those opportunities

June 2010 ST

1"

12

to look over your strategy, try to think ahead, or pull
your notes and files together into a better order.

Use concise test documentation. I'm talking about
lists, outlines, or tables. I like to use a wiki for this these
days (I wrote this using SocialText). Or Google Docs
works, too. Something online, shareable, that has a way
to roll back history. When I say concise I mean write
what you need and no more than that. Think tables and
lists and outlines. Avoid writing detailed instructions.
Don’t write things that are easily handled by training.
Unless you are testing Microsoft Word, writing is not
testing, and for darn sure formatting is not testing.

Use recording tools to shorten bug investigation
time. They say that scripted testing is better than
exploratory testing when it comes to bug investigation.
This is completely untrue. Having a list of steps that
you produced two months ago is no more helpful than
a list you made as you went along, except you are two
months wiser today, and the notes you record today
are fresh in your mind. Of course, even better is if you
don’t write down your steps at all — because they were
captured automatically by your recording tool. There
are various commercial and open source tools you
can use for this. I like BBTestAssistant, TestExplorer,
or Spector. But there’s also Wink, which is free. Also
remember there are log files, especially if you are
testing something online. Or use a digital camera.

Do lots of exploratory scenario testing.

This means that you test according to realistic and
complex sequences of user behavior organized around
a coherent scenario. The major downside of it is that
to do it well requires that you get real users to help
with it or that you have a deep understanding of real
users, how they think, and what they will do with
your product. Exploratory scenario testing would be
the same as beta testing if beta testing were highly
organized, focused on challenging situations rather
than just everyday situations, and done by people
passionate to find bugs.

Now for the social ideas. Unlike Charlton Heston,
who was being chased by zombies most of the time in
that movie, you need social skills to be a really good
omega tester. It’s your social skills that will save you.

Declare high service aspirations. For instance,
when I work with a development team, I give them a
one page declaration of all the things I promise to do
for them. It documents twelve commitments I make
to them as a tester. I don’t want them to see me as a
nagging burden. [want to ease their burden, not add
to it. I will serve my team in any way I can to achieve
that. By making my commitment clear, I find that I
foster a similar attitude in return. That makes my job
easier, because their help is vital for me to do my job
well. The success of the following, begins with this one.

Set low technical expectations. “Yay, we hired a
tester! Now we’ll ship without bugs!” People will think
testing is easy. People will think your job is to “ensure

ST /

www.softwaretestpro.com

quality.” You should challenge that thinking right from
the start. Several articles could be written about how to
do that. It will have to suffice for me to say that there
is no theory of testing and no tool of testing capable of
demonstrating that a product is bug free. There is no
set of such tools, theories, techniques that can do that.
There is no way at all to do that. All you can promise
is to look for problems in thoughtful, reasonable ways.
And forget about ensuring quality. You support the
team in producing a good product. You are part of the
process of making a good product, but you are not

the one who controls quality. The chief executive of
the project is the only one who can claim to have that
power (and he doesn’t really control quality either, but
don’t tell him that).

Co-locate. It may not be in your power to huddle
around the same desks as the programmers, but baby,
get as close as you can. It makes a profound difference
in your productivity if you are within ear and eye range
of the people creating the product. My feeling is that

it doubles my productivity — at least — to work ten feet
away versus ten miles away, and quadruples it versus
being ten time zones away.

Practice, practice, practice explaining testing.

It’s not enough to know how to test. If you are in

a team of one, congratulations, you now have to be
ready to explain testing, defend testing, and teach
testing. Over and over. To the same people, too,
because they will keep forgetting what you tell them.
One way to practice is to blog about testing, or write
about it in a forum like the Context-Driven forum
(software-testing@yahoogroups.com).

Advocate for testability. Testing and development are
not symmetrical. A small decision made by a designer,
making little work for him, can be a whole lotta work
for you. You've got to get in there, gently, and help
them understand the testing impact of what they

add or change. Don’t expect anyone to know about
testability unless you tell them what that is. Basically,
it boils down to two big things: A) can you see it? B) can
you control it? That’s why I push for rich log files and
a scriptable interface (I'm happy to test through a GUI,
but I also want to get underneath the GUI to control
the product better and see it better).

Advocate for strong pre-testing. [don’t worry about
this so much when I'm working with a good test team.

It can be hard to get developers to work methodically.

It is especially hard to push for that without sounding
like a nag. But if you are a one-person team, you don’t
have much choice. You need to sit down and level

with them: unless they do unit testing and paired
programming, or something similarly effective at clearing
out the knucklehead bugs before it comes to you, then
you are going to be overwhelmed with bugs to find,

and that will slow you down. You'll be like one of those
contestants in a “money booth” trying to grab flying cash
while it whirlwinds all over the place. If you like sports
metaphors, tell them you want be a good goalie for the
team, but even you can’t defend against multiple shots
on goal all at the same time.

Avoid bureaucratic bug reporting protocols. Bug
investigation and reporting take up a lot of your time.
The more time it takes, the less time you have to find
new bugs. But if you test alongside the programmer
whose code it is, you'll find that reproducing the bug
and writing a report become mostly unnecessary.
He sees what you’re doing and immediately reacts
to it. I've found this to be a wonderful way to test
something in its early stages. I've also experienced
a project where my testers were required by our
client to use a cumbersome bug tracking system that
reminded us of filing tax forms. We estimated that we
lost 30 minutes of test time for each bug we reported,
over and above the time it took us to actually
investigate and describe the steps to reproduce.
On top of that, we were not allowed to talk to the
programmers. We didn’t work near them, never met
them, or heard from them. It was an outrageous
waste of time. If you are a team of one, tell your
management that you need to minimize your report
grinding and maximize your bug finding.

My Favorite Advice for Omega Testers...

If you are an omega tester, feeling surrounded

by creatures who have tester-like qualities (arms,
legs, human DNA, etc.) and yet are not like you,
do not be dismayed. Befriend them. Get them to
help you. Here’s the secret: people will help you
test if you make it easy and fun for them. Let’s
call these people beta testers.

Beta testers can help you test, but don’t give

them any paperwork to do. Blech. I was once a
beta tester on an early PDA (one of the very earliest
ever, which was called the Magic Link or something
like that). I noticed only after having the device for
a couple of weeks that Sony had expected me to

fill out a minute-by-minute log of exactly what I
did with their product. Ha ha ha. No, I just
doodled in some fake data and returned it.

Many things are expected of a true professional
tester. You should be able to report and justify
your test coverage and your oracles. You need to
understand risks and use test tools. But push
none of that onto your beta testers. Instead,
create a carnival atmosphere of old fashioned
bug huntin’. If I can get my tester helpers all

in the same room for a testing event, [make
sure they are fed. I pair them up and give each
pair a bell to ring when they think they found a
problem. Beta testers are motivated by the respect
they receive and the feeling of being listened to.

I've also had very good experiences with bug
bounties — paying people who are not on the test
team for each critical bug that they find. You can
do this with actual cash money, or do it with play
money that can be used to purchase items at an
auction you hold at the end of the project (the
latter method allows you to completely control
the budget).

Who's the Real Zombie?

If you do a good job being an omega tester, you'll find

that the other people on the team, over time (it may take
several projects), will come to respect and rely upon you.
Otherwise, especially if you fall into a formulaic, uninspired,
or complainy approach to your work, the project team may
come to see you as the mutant zombie in their midst. One
sign of this is that they run away when you shuffle toward
them with your arms stiffly out as if groping for brain matter
or “unambiguous requirements.” Don’t be like that, okay?

About The Author

James Bach: If Devil’'s Advocate were a televised sport, James would play it
professionally. A conscientious objector to high school, he skipped school and
taught himself programming. Apple Computer tried him out as test manager,
and he never looked back. He worked in Silicon Valley for nearly ten years,
now independent and one of the most outspoken advocates of skilled sapient
testing. James Co-authored “Lessons Learned in Software Testing”, and wrote

“Secrets of a Buccaneer-Scholar”.

Test Early Without the
App’s User Interface!

Component Level Load Testing

e SQL and Stored Procedures
e NET Assemblies
e XML Web Services

No User Interface Recording Required

LOAD TEST

Download your free trial at:
www.teoinnovations.com

Volume 7 / lIssue 5 / June 2010 ST2a 13

