
JO
H

N
 M

A
R

T
IN

/S
IS

16 STQE NOVEMBER/DECEMBER 2003 www.stqemagazine.com

Cover Story: Testing

AMONG THE HARDEST THINGS TO EXPLAIN IS SOMETHING THAT EVERYONE ALREADY KNOWS.

We all know how to listen, how to read, how to think, and how to tell anecdotes about the

events in our lives. As adults, we do these things every day. Yet the level possessed by the

average person of any of these skills may not be adequate for certain special situations.

Psychotherapists must be expert listeners, and lawyers expert readers; research scientists

must scour their thinking for errors, and journalists report stories that transcend parlor

anecdote. So it is with exploratory testing (ET). It’s a simple concept, but to do it well

requires substantial skill and practice. The outer trappings,

inputs, and outputs of exploratory testing are worth look-

ing at, but it is the inner structure of ET that matters

most—the part that occurs inside the mind of the tester.

That’s where ET succeeds or fails; where the excellent

explorer is distinguished from the amateur.

I N F O T O G O

� Exploratory testing is a simple
concept, but to do it well
requires skill and practice.

� There are systematic, specific
exercises you can do to become
a better exploratory tester.

INSIDE THE MIND OF AN
EXPLORATORY TESTER



Discover how 
to develop 

eight key skills 
that expert 

explorers possess
BY JAMES BACH



DISCIPLINED, PURPOSEFUL 
TESTING
To give you an example of what an ex-
ploratory tester might be thinking about
as he tests, let me share one of my ET
experiences.

I once had the mission of testing a
popular photo editing program in four
hours. My mission was to assess it
against the specific standards of the Mi-
crosoft Windows Compatibility Certifi-
cation Program. The procedure for per-
forming such a test is laid out as a
formalized exploratory testing process.
My goal was to find any violations of the
compatibility requirements, all of which
were clearly documented for me.

With my charter in mind, I set myself

to test. Applying one of the simplest
heuristics of exploring, I chose to begin
by walking through the menus of the ap-
plication, trying each one. While doing
so, I began creating an outline of the pri-
mary functions of the product. This
would become the basis for reporting
what I did and did not test, later on.

I noticed that the Save As… function
led to a sophisticated set of controls that
allowed the user to set various attributes
of image quality. Since I knew nothing
about the technical aspects of image qual-
ity, I felt unprepared to test those func-
tions. Instead, I started an issues list and
made a note to ask if my client was will-
ing to extend the time allowed for testing
so that I could study documentation

about image quality and form a strategy
for testing it. Having made my note, I
continued walking through the menus.

A basic strategy of ET is to have a
general plan of attack, then allow your-
self to deviate from it for short periods
of time. It’s like being on a tour bus.
Even though the tour bus takes you to
certain places at certain times, you can
still step off occasionally and wander
around. The same is true with ex-
ploratory testing. There’s value in seeing
what you can see on the planned tour,
but it’s also important to occasionally
look at something more closely or to in-
vestigate something that might not have
been on the itinerary. Whatever you do,
don’t fall asleep on the tour bus—this

Cover Story: Testing

I’ve tried various definitions of exploratory testing. The one that has

emerged as the all-around favorite among my colleagues is this:

Exploratory testing is simultaneous learning, 
test design, and test execution.

In other words, exploratory testing is any testing to the extent that the

tester actively controls the design of the tests as those tests are per-

formed and uses information gained while testing to design new and

better tests.

Have you ever solved a jigsaw puzzle? If so, you have practiced ex-

ploratory testing. Consider what happens in the process. You pick up a

piece and scan the jumble of unconnected pieces for one that goes

with it. Each glance at a new piece is a test case (“Does this piece con-

nect to that piece? No? How about if I turn it around? Well, it almost

fits but now the picture doesn’t match...”). Instead of looking for prob-

lems, you’re looking for connections, but otherwise it’s the same sort of

thinking. It is pretty straightforward to test if two pieces fit together,

but the choice and progression of which pieces to pick up in the first

place is not so simple. There is no sure way to know when you start the

puzzle which “tests” to run and in what order.

But it isn’t a random selection, either. This is where skill comes in.

You home in on shape, color, or pattern. You might sort the pieces into

little piles, first. You might flip them all face up. If you find you’ve got a

big enough block of pieces assembled, you might move it into the

frame of the puzzle to find where it connects with everything else. You

may feel disorganized from time to time, and when that happens, you

can step back, analyze the situation, and adopt a more specific plan. If

you work on one kind of “testing” for a while (attempting to fit border

pieces together, for instance), you might switch to another kind just to

keep your mind fresh. Even though you aren’t handed a step-by-step

procedure for doing it, solving a jigsaw puzzle well is a systematic

process—just as is the design of software tests.

Notice how the process flows, and how it remains continuously,

each moment, under the control of the practitioner. New ideas and

strategies occur to you as the pattern of the puzzle emerges. Each puz-

zle piece placed is one less in the pile, making the rest of the search

process a little easier. The puzzle changes as you solve it.

If you solve the same puzzle several times, your familiarity with the

picture and the pieces will allow you to do the job more quickly. You

will have a better idea of how to sort the pieces; it’s

even possible that you may script the process by

putting an ID code on the back of each piece

(there is at least one jigsaw puzzle I’ve seen

where the pieces come with numbers on the

back). But the first time through, you learn

as you go. You can’t avoid the learning.

If you happened to know in advance ex-

actly where each piece was supposed to go,

then it would no longer be a jigsaw puzzle, but

rather a jigsaw assembly process. You could then

have a method to put it together much more efficient-

ly. But that’s not like most testing I’ve experienced. In

most testing, I don’t know where the bugs are going to

be when I start. I’m not even sure where the risks are,

most of the time. When I test, I puzzle over the prob-

lem of what the next test should be. The specifics of

that puzzle, as they emerge through the process of

solving that puzzle, affect my choice of tests as I go.

This feedback dynamic—think a little, test a little, think a little more,

test a little more— is at the heart of any exploratory investigation, be it

for testing, development, or even scientific research or detective work.

18 STQE NOVEMBER/DECEMBER 2003 www.stqemagazine.com

EXPLORATORY TESTING DEFINED



20 STQE NOVEMBER/DECEMBER 2003 www.stqemagazine.com

Cover Story: Testing

happens to you when you adopt a plan
to visit various parts of the product, then
visit them without really thinking about
how well the product is working. A suc-
cessful exploratory tester is always ques-
tioning what happens.

My first urge to leave the tour of the
menus was when I found a dialog box in
the program that allowed me to control
the amount of memory used by the ap-
plication. This immediately gave me an
idea (sudden ideas are valued in ex-
ploratory testing). Since stability is one
of the requirements of the Windows
Compatibility program, I thought it
would be interesting to try to destabilize
the product by setting it to use the mini-
mum amount of memory, then ask it to
perform memory-intensive functions. So
I set the slider bar to use 5% of system
memory, then visited the image proper-
ties settings and set the image size to 100
inches square. That’s a big canvas. I
filled the canvas with purple dots and
went to the effects menu to try activating
some special graphical effects.

Okay, here comes an important part:
I chose a “ripple” effect from the menu
and bam, the product immediately dis-
played an error message informing me
that there was not enough memory for
that operation. This is very interesting
behavior because it establishes a stan-
dard. I have a new expectation from this
point forward: A function should be
able to prevent itself from executing if
there is not enough memory to perform
the operation. This is a perfect example
of how, in exploratory testing, the result
of one test influences the next, because I
then proceeded to try other effects to see
if the rest of them behaved in the same
way. What did I find? None of the others
I tried behaved that way. Instead, they
would crank away for five minutes, do-
ing nothing I could see other than driv-
ing the hard disk into fits. Eventually an
error popped up (“Error –32: Sorry, this
error is fatal.”) and the application
crashed.

This is a nice result, but I felt that the
test wouldn’t be complete (exploratory
testers strive to anticipate questions that
their clients will ask later on) unless I set
that memory usage lever all the way up,
to use the most memory possible. To my

surprise, instead of yielding the Error
–32, the entire operating system froze.
Windows 2000 is not supposed to do
that. This was a far more serious prob-
lem than a mere crash.

At this point in the process, I had
spent about thirty minutes of a four-hour
process, and already found a problem
that disqualified the application from
compatibility certification. That was the
good news. The bad news is that I lost
my test notes when the system froze. Af-
ter rebooting, I decided I had learned
enough from stress testing and returned
to the menu tour.

I submit that this test story is an ex-
ample of disciplined, purposeful testing. I
can report what I covered and what I
found. I can relate the testing to the mis-
sion I was given. It was also quite repeat-
able, or at least as repeatable as most
scripted tests, because at all times I fol-
lowed a coherent idea of what I was try-
ing to test and how I was trying to test it.
The fact that those ideas occurred to me
on the fly, rather than being fed to me
from a document, is immaterial. I hope
you see that this is a far cry from unsys-
tematic testing.

IMPROVING YOUR
EXPLORATORY TESTING SKILLS
Let’s look at eight key elements that dis-
tinguish an expert exploratory tester
from an amateur, and some things you
can do to get better at those skills.

Test Design: An exploratory tester is
first and foremost a test designer. Anyone
can design a test accidentally. The excel-
lent exploratory tester is able to craft
tests that systematically explore the prod-
uct. Test design is a big subject, of course,
but one way to approach it is to consider
it a questioning process. To design a test
is to craft a question that will reveal vital
information about a product.

To get better at this: Go to a feature
(something reasonably complex, like the
table formatting feature of your favorite
word processor) and ask thirty questions
about it that you can answer, in whole or

part, by performing some test activity, by
which I mean some test, set of tests, or
task that creates tests. Identify that activ-
ity along with each question. If you can’t
find thirty questions that are substantial-
ly different from each other, then per-
form a few tests and try again. Notice
how what you experience with the prod-
uct gives you more questions.

Another aspect of test design is mak-
ing models. Each model suggests differ-
ent tests. There are lots of books on mod-
eling (you might try a book on UML, for
instance). Pick a kind of model, such as a
flowchart, data flow diagram, truth
table, or state diagram, and create that
kind of model representing a feature you
are testing. When you can make such
models on napkins or whiteboards in
two minutes or less, confidently and
without hesitation, you will find that you
also are more confident at designing tests
without hesitation.

Careful Observation: Excellent ex-
ploratory testers are more careful ob-
servers than novices, or for that matter,
experienced scripted testers. The scripted
tester need observe only what the script
tells him to observe. The exploratory
tester must watch for anything unusual,
mysterious, or otherwise relevant to the
testing. Exploratory testers must also be
careful to distinguish observation from
inference, even under pressure, lest they
allow preconceived assumptions to blind
them to important tests or product be-
havior.

To get better at this: Try watching an-
other tester test something you’ve already
tested, and notice what they see that you
didn’t see first. Notice how they see things
that you don’t and vice versa. Ask your-
self why you didn’t see everything. Anoth-
er thing you can do is to videotape the
screen while you test, or use a product
like Spector that takes screen shots every
second. Periodically review the last fifteen
minutes of your testing, and see if you no-
tice anything new.

Or try this: describe a screen in writ-
ing to someone else and have them draw

2

1

Excellent exploratory testers are more careful observers than
novices, or for that matter, experienced scripted testers.



the screen from your description. Contin-
ue until you can draw each other’s
screens. Ideally, do this with multiple
people, so that you aren’t merely getting
better at speaking to one person.

To distinguish observation from infer-
ence, make some observations about a
product, write them down, and then ask
yourself, for each one, did you actually
see that, or are you merely inferring it?
For instance, when I load a file in Mi-
crosoft Word, I might be tempted to say
that I witnessed the file loading, but I
didn’t really. The truth is I saw certain
things, such as the appearance of words
on the screen that I recall being in that
file, and I take those things to be evi-
dence that the file was properly loaded.
In fact, the file may not have loaded cor-
rectly at all. It might be corrupted in
some way I have not yet detected.

Another way to explore observation
and inference is to watch stage magic.
Even better, learn to perform stage mag-

ic. Every magic trick works in part by ex-
ploiting mistakes we make when we
draw inferences from observations. By
being fooled by a magic trick, then learn-
ing how it works, I get insight into how I
might be fooled by software.

Critical Thinking: Excellent exploratory
testers are able to review and explain
their logic, looking for errors in their
own thinking. This is especially impor-
tant when reporting the status of a ses-
sion of exploratory tests, or investigating
a defect.

To get better at this: Pick a test that
you recently performed. Ask what ques-
tion was at the root of that test. What
was it really trying to discover? Then
think of a way that you could get a test
result that pointed you in one direction

(e.g., program broken in a certain way)
when reality is in the opposite direction
(e.g., program not broken, what you’re
seeing is the side effect of an option set-
ting elsewhere in the program, or a con-
figuration problem). Is it possible for the
test to appear to fail even though the
product works perfectly? Is it possible for
the product to be deeply broken even
though the test appeared to pass? I can
think of three major ways this could hap-
pen: inadequate coverage, inadequate or-
acle, or tester error.

Inadequate coverage means that
your test doesn’t touch enough of the
product to fulfill its goal. (Maybe you
have tested printing, but not enough dif-
ferent printing situations to justify confi-
dence that the print function works.) Or-
acles are mechanisms or principles for
recognizing a problem if it occurred. In-
adequate oracle, then, means you used
a weak method of determining whether a
bug is present, and that led either to re-
porting something that isn’t a problem or
failing to notice something that is a prob-
lem. (Maybe you printed something to a
file, and you verified that the file was cre-
ated, but you didn’t check the contents of
the file.) Tester error means that your
test design was fine, but you simply did
not notice something that happened, or
used the wrong data, failed to set up the
system properly for testing, etc. (Maybe
you saw that the print-out looked cor-
rect, but it later turned out that you were
looking at the results of a different test.)

Since testing is basically an infinite
process, all real-life testing involves com-
promises. Thus, you should be able to
find many ways your tests could be
fooled. The idea is to maintain awareness
about the limitations of your testing. For
a typical complex product, it takes lots of
different tests to answer any given ques-
tion with high confidence.

Diverse Ideas: Excellent exploratory
testers produce more and better ideas
than novices. They may make use of
heuristics to accomplish this. Heuristics
are mental devices such as guidelines,
generic checklists, mnemonics, or rules of

4

3

22 STQE NOVEMBER/DECEMBER 2003 www.stqemagazine.com

Cover Story: Testing

When I say “scripted test,” I mean a set of instructions for executing a test. In

scripted testing, tests are specified in advance of test execution. Tests are not

changed while execution is underway, nor are they routinely changed based

on any learning that might happen while performing the test. A fully script-

ed test informs the tester what to do and what to look for. If a test tells you

exactly what to do, but does not tell you how specifically to know if a bug

has occurred, then that test is to some extent relying on your ability to think

for yourself; to explore.

Actually, pure scripted testing, executed by humans, is not very common.

Many scripts intended to be performed by hand are not specified in great detail.

Some test cases are specified in just a few words, such as “try long inputs.” It requires

substantial judgment and background knowledge to turn those test cases into real

tests. So, even though exploratory testing and scripted testing are opposites, it’s more

helpful to see them as opposite ends of a spectrum. Most real-life tests are some

blend of exploratory and scripted behavior.

SCRIPTED TESTING IS THE 
OPPOSITE OF EXPLORATORY TESTING

Excellent exploratory testers are able to review and explain 
their logic, looking for errors in their own thinking.



thumb. The Satisfice Heuristic Test Strat-
egy Model (http://www.satisfice.com/
tools/satisfice-tsm-4p.pdf) is an example
of a set of heuristics for rapid generation
of diverse ideas. James Whittaker and
Alan Jorgensen’s “17 attacks” is another
(see How to Break Software).

To get better at this: Practice using the
Heuristic Test Strategy Model. Try it out
on a feature of some product you want
to test. Go down the lists of ideas in the
model, and for each one think of a way
to test that feature in some way related to
that idea. Novices often have a lot of
trouble doing this. I think that’s because
the lists work mainly by pattern match-
ing on past experience. Expert testers see
something in the strategy model that trig-
gers the memory of a kind of testing or a
kind of bug, and then they apply that
memory to the thing they are testing to-
day. The ideas in the model overlap, but
they each bring something unique, too.

Another exercise I recommend is to
write down, off the top of your head,
twenty different ways to test a product.
You must be able to say how each idea is
unique among the other ideas. Because I
have memorized the heuristic test strate-
gy model, when I am asked this question,
I can list thirty-three different ways to
test. I say to myself “CITESTDSFDPOCRUS-

PICSTMPLFSDFSCURR” and then expand
each letter. For instance, the second letter
stands for information, which represents
the idea “find every source of informa-
tion I can about this feature and compare
them to each other and to the product,
looking for inconsistencies.” The “O”
stands for operations, which represents
the idea “discover the environment in
which the product will be used, and re-
produce that environment as close as I
can for testing.”

Rich Resources: Excellent exploratory
testers build a deep inventory of tools, in-
formation sources, test data, and friends
to draw upon. While testing, they remain
alert for opportunities to apply those re-
sources to the testing at hand.

To get better at this: Go to a shareware
site, such as Download.com, and review
the utilities section. Think about how you
might use each utility as a test tool. Visit
the Web sites related to each technology
you are testing and look for tutorials or

white papers. Make lots of friends, so you
can call upon them to help you when you
need a skill they have.

Self-Management: Excellent explorato-
ry testers manage the value of their own
time. They must be able to tell the differ-
ence between a dead end and a promising
lead. They must be able to relate their
work to their mission and choose among
the many possible tasks to be done.

To get better at this: Set yourself a
charter to test something for an hour. The
charter could be a single phrase like “test
error handling in the report generator.”
Set an alarm to go off every fifteen min-
utes. Each time the alarm goes off, say
out loud why you are doing whatever you
are doing at that exact moment. Justify it.
Say specifically how it relates to your
charter. If it is off-charter, say why you
broke away from the charter and whether
that was a well-made decision.

Rapid Learning: Excellent exploratory
testers climb learning curves more quick-
ly than most. Intelligence helps, of
course, but this, too, is a matter of skill
and practice. It’s also a matter of confi-
dence—having faith that no matter how
complex and difficult a technology looks
at first, you will be able to learn what
you need to know to test it.

To get better at this: Go to a book-
store. Pick a computer book at random.
Flip through it in five minutes or less,
then close the book and answer these
questions: what does this technology do,
why would anyone care, how does it
work, and what’s an example of it in ac-
tion? If you can’t answer any of those
questions, then open the book again and
find the answer.

Status Reporting: Tap an excellent ex-
ploratory tester on the shoulder at any
time and ask, “What is your status?” The
tester will be able to tell you what was
tested, what test techniques and data were
used, what mechanisms were used to de-
tect problems if they occurred, what risks

the tests were intended to explore, and
how that related to the mission of testing.

To get better at this: Do a thirty-
minute testing drill. Pick a feature and
test it. At the end of exactly thirty min-
utes, stop. Then without the use of notes,
say out loud what you tested, what ora-
cles you used, what problems you found,
and what obstacles you faced. In other
words, make a test report. As a variation,
give yourself ten minutes to write down
the report.

WHAT EXPLORATORY
EXPERTISE FEELS LIKE, 
INSIDE YOUR HEAD
In Operating Manual for Spaceship
Earth, Buckminster Fuller wrote, “Real
wealth only increases.” He was speaking
of knowledge. I often think about that
line when I’m testing, because when I sit
down to explore, I don’t know what’s go-
ing to happen. But I do know that I will
definitely learn something interesting and
probably important. Good things will
happen. My wealth will only increase.

At a certain point in your practice,
you will begin to feel a calm confidence
that the process works. Your mind will
respond. You will notice things. Potent
tests will occur to you and you will catch
many important bugs. You may not al-
ways be able to articulate what you’re
doing and how it works, but you will be
able to demonstrate it, and suggest spe-
cific exercises that help other people
learn how to do it, too. STQE

James Bach owns Satisfice, Inc. (www.
satisfice.com), a consulting and training
company specializing in rapid software
testing techniques. He is the author, with
Cem Kaner and Bret Pettichord, of
Lessons Learned in Software Testing: A
Context-Driven Approach.

AUTHOR’S NOTE: Learning and improve-
ment is a lifelong process. I am grateful
to my “rich resources” Cem Kaner and
Brian Marick for their criticisms and sug-
gested fixes for this article.

8

7

6

5

www.stqemagazine.com NOVEMBER/DECEMBER 2003 STQE 23

Cover Story: Testing

S T I C K Y N O T E S
For more on the following topics 
go to www.stqemagazine.com
� Satisfice Heuristic Test Strategy

Model
� James Whittaker and Alan Jorgen-

sen’s “17 attacks”


