
So
ft

w
ar

e 
Re

al
iti

es

C
hang
vital
man
jures
1984

Remember th
standing row
numb complia
crat, set free b
hurls a hamm
Big Bad Broth

This image 
gle with the
improvements
temperament 
ing hero, my ro
is more like lec
me wants to 
improvements
part wants to p
of the product

CHANGE CONT
Change con

that make it
annoying. W
because a tiny
can create a b
But it can also
wonderful ne
about change
developer cou
liant ideas also

C

So
ft

w
ar

e 
Re

al
iti

es

.

August 1998 113

e control. For me, this
 issue in software project
agement immediately con-
 the image of the famous
 Macintosh commercial.
at one? Gray drudges

 upon row, staring with
nce at a lecturing bureau-

y a hero who bursts in and
er that breaks the spell of
er.
depicts my personal strug-
 problem of managing
 to a product. Although my
is that of hammer-throw-
le as quality assurance guy
turing bureaucrat. Part of
open the flood gates to
 and better ideas; the other
rotect the existing quality

 by limiting change.

ROL
trol is vital. But the forces
 necessary also make it
e worry about change
 perturbation in the code
ig failure in the product.
 fix a big failure or enable
w capabilities. We worry
 because a single rogue

ld sink the project; yet bril-
 originate in the minds of

those rogues, and a burdensome change-
control process could effectively dis-
courage them from doing creative work. 

My ambivalence about this issue is
only deepened by the fact that change-
control processes are easily corrupted.
Change control means risk analysis, and
there’s no easy or certain way to do that.
Coupled with the amazing capacity we
humans have for oversimplifying the
complex, change control can become
mindless resistance to change and an
automatic rejection of all risk, regardless
of potential reward.

Or, just as easily, change control may
degenerate into a set of empty rituals that
allow any change to be made as long as
the rituals are honored. Such a process is
less a practical device than a sort of gar-
goyle meant to scare evil spirits or impress
clients. Midway between allowing noth-
ing or everything, change control may also

become a political filter where change is
resisted unless you’re in with the in-crowd,
regardless of the situation’s merits. 

At SmartPatents, change control
processes are (at least officially) my
responsibility. How can I avoid the role
of bureaucrat, gargoyle, or political poll-
ster? How can I help the process work
well? Let me describe the process we’ve
arrived at, then decide for yourself if I
deserve the hammer treatment.

PROBLEM AND PROCESS
The only legitimate purpose of defined

process is to solve problems. So let’s start
there. What problem do we have?

SmartPatents is a market-driven soft-
ware company, not a contract-driven one.
We aren’t regulated either. We don’t need
to justify ourselves to an outside client or
agency. Our need for change control
comes mainly from our desire to minimize
the chance that a major problem will be
introduced into the product while we’re
trying to improve it, especially late in the
cycle. We want to minimize expensive and
time-consuming regression testing. We
also want to assure that the change
process respects the concerns of each team
member who may be impacted by a par-
ticular change. At the same time, our
process must be flexible enough to let us
add product functionality late in the devel-
opment cycle, because that’s how market-
driven software companies compete.

When I joined the company last
October, it had three change-manage-
ment processes in place:

• We stored all source code in a source
control system.

• we compiled and linked the product
according to an official build
process executed on a dedicated
build machine; and

• we put the project under code freeze
in the last few weeks of development.

Code freeze doesn’t mean that code
stops changing. It means that we impose
a formal code-change protocol. Originally,
following protocol meant that Gordon,
our senior tester, had to grant a waiver for
each change. Being an easygoing fellow,
Gordon waived virtually everything. Since
he knew about each change, he theoreti-

The Highs 
and Lows of

hange Control
James Bach, SmartPatents

Change control is vital.
But the forces that

make it necessary also
make it annoying.

James Bach
Copyright (c) 1998, IEEE Computer SocietyAuthor Contact: james@satisfice.com



114 Computer

Software Realities

cally had some inkling of what needed to
be retested for each new build. 

This protocol was administered
through a communal spreadsheet. Any-
one requesting a change was supposed to
enter the request as a single line in the
sheet. Gordon reviewed the spreadsheet
periodically and granted waivers. How-
ever, if someone, for whatever reason,
made a change without going through the
spreadsheet, Gordon would never know.

Many waivers were granted in the hall-
way, off the record. So the process got
pretty sloppy. I don’t mean people
behaved badly or actively subverted the
process. The process became sloppy
because it was not designed to fit the way
technical people work. People get dis-
tracted, forget details, and make deci-
sions on the fly, often in hallways. Any
robust method of change control must
take this into account. 

REDUCING THE RISK
To reduce the risk of a dangerous

change, I wanted a more visible, reliable
process. So we retired the old spreadsheet
and installed a bug-tracking system to
manage change requests. (A bug report
at SmartPatents can be a change request,
problem report, or other task assignment
that may involve code changes.) For each
code change after a code freeze, we
required developers to place a check-in
comment in the bug database with the
change request’s ID number. Prior to each
build, a QA engineer examines the check-
in comments and verifies that each code
change corresponds to a waived bug in
the database.

This process is a system for tracing
code changes back to change requests
and approvals. Barring intentional sub-
version, the system is theoretically air-
tight. Hallway waivers can slip through
the cracks, and developers can still for-
get to follow the process. However, when
that happens, the prebuild comment
check detects the problem, and the build
stops until each rogue change is justified
and documented. This feedback loop
allows the process to tolerate human
error while gently discouraging it.

For this process to be more than an
empty ritual, however, it needs a brain.
How do we decide which changes to

approve? We do that mainly via the
waiver meeting, a systematic, daily
review of the bug list by representatives
of each major project function: market-
ing, support, documentation, develop-
ment, and QA. In this meeting we decide
whether to allow a change or postpone
it to the next project release. Decisions
are made by unanimous consent.

Since December 1997, this has been
our official process for change control
after code freeze.

Now, any wizened veteran of software
process improvement who heard a story
like this—perhaps over coffee during a
morning break at a software quality con-
ference—might well nod sagely and have
another muffin. But behind the pastry,
he’d probably wonder: “What part of
James’ story is real, and what part is fan-
tasy? How does he know that his process
is worth following? What are its prob-
lems and liabilities?” 

HURLING THE HAMMER
Reality versus fantasy? Problems and

liabilities? Sit down, this will take a while.
There are a lot of problems with this
approach. We’ve had to make a number
of changes to our change-control protocol
in order to make it more efficient and effec-
tive. I’m still not satisfied with it. If I call it
a best practice, that’s only because I
haven’t yet become aware of a better one.

Jerry Weinberg once quipped, “We
don’t manage projects, we manage sto-
ries about projects.” My change-control
story is a simplification of what we actu-
ally do, so here are some additional
details to give you a better feel for our
situation and the struggles we’re having.

• It seems that every other waiver meet-
ing is cancelled or postponed. Sometimes
I feel too tired or harried to run them.
Daily meetings wear everybody down, but

I haven’t yet thought of an effective alter-
native. If we don’t grant waivers fre-
quently, we hinder product improvement.
Perhaps we are freezing code too soon and
staying frozen too long.
• We go through periods where we’re so
busy that we neglect the prebuild com-
ment check. The truth is, I’m not always
very motivated to do it. We’ve had such
good compliance to the protocol that I no
longer expect to see unauthorized changes.
• What looks like good compliance to the
protocol may actually be the unauthorized
reuse of old waivers on new changes. I only
have a developer’s word that a particular
change is genuinely related to the grant of
a particular waiver. Even if a developer is
absolutely honest, there is a lot of room for
creative interpretation.
• Each waiver meeting is designed to
handle many issues. We hunch around a
monitor and discuss each problem until
we reach a consensus. The group gets
impatient if a discussion about an item
goes more than a few minutes. Since we
typically handle 15 to 20 problems per
hour, and we never let any single meeting
go more than 90 minutes, the pressure is
on. I don’t think that pressure creates a
good environment for carefully consid-
ering each issue.
• Sometimes we encounter a problem
that requires a detailed explanation and
analysis by an expert who is not nor-
mally in the waiver meeting. The meeting
is then disrupted while someone searches
for that expert. 
• We often have to hold the waiver meet-
ing without an ideal set of participants.
The minimum quorum is one person from
QA and one development lead. This
allows the meeting to go forward but
increases the risk of a poor decision or an
unpleasant surprise to support people or
technical writers.
• Sometimes the developers are confused
about what a waiver means. A waiver is
always permission—but usually not a rec-
ommendation—to make a change. We
rely on the judgment of each developer to
determine which changes are too risky.
(And what does “risky” mean? Its defin-
ition varies with the situation and the
developer involved.)
• We rarely check that waived problems
are actually being properly resolved. It’s

It is important that 
change control not

become either mindless
resistance to change or 

a set of empty rituals 
for permitting change.

.



August 1998 115

possible for a waived problem to sit on a
developer’s plate for days (for example, if
a developer forgets to check the tracking
system) or to be resolved in an unaccept-
able way. We have occasionally been
forced to postpone important changes just
because an earlier decision to make the
change was not noticed in time.
• Gordon and I still sometimes grant
waivers outside of the waiver meeting.
Since doing so bypasses the meeting, we
try to grant hallway waivers only on non-
controversial matters. But sometimes
we’re wrong. 
• What if a single waiver relates to the
work of several developers? There is no
easy way to handle that case within our
system. It’s possible for a problem to
bounce around among several develop-
ers, none of whom takes full responsi-
bility for it.
• What happens to changes that are
mandated by a code review? To cooperate
with our change protocol, developers
must reduce each issue resulting from a
code review to a change request. But the
resulting paperwork has discouraged
developers from holding code reviews
after code freeze.
• Some problems in our system are
chronically kicked forward from release
to release, and are never resolved. We call
these problems bow wave bugs because
they keep getting driven ahead like dol-
phins riding the bow wave of a big ship.
A bow wave situation develops when a
problem is too hard or risky to fix during
code freeze of the current release, but not
quite important enough to make it into
the next release’s project plan.

SMACK!
We have refined the code freeze proto-

col in a number of ways to respond to
these experiences and problems. In one
case, the project lead proposed and
implemented a special change-control
board to consider changes that are too
complex for waiver meetings. The CCB,
as we call it, has the same membership as
the waiver meeting, but instead of being
held every day to consider a series of
issues, it’s held at the discretion of a pro-
ject lead to consider a single issue. The
CCB gives us a systematic way to have
deeper conversations about changes.

I feel good about our continuing
refinement of this process, but I wonder
about something that may be a tragic
flaw in this grand design. Perhaps you’ve
already spotted it: Our change-control
process may indeed work too well.

Good risk management late in the pro-
ject does indeed compensate for prob-
lems with poor requirements analysis
and design early in the project. However,
if we believe we can clean anything up in
the end, we don’t have much incentive to
learn better problem-prevention meth-
ods. Rather, we may feel an incentive to
be even more reckless with our early
design and coding, in the interests of
pumping more features into the product.

In other words, my company may be
addicted to change control. And each
improvement in change control may
deepen that addiction. 

I experienced this sort of thing when I
worked at Borland, where I first encoun-
tered the waiver meeting process, which
we called the bug council. At first we
administered the meeting by writing each
approved change on a big whiteboard,
which could hold only about 200
changes. As we reached that number we’d
begin to murmur and moan about how
there were too many changes coming
through. Two hundred items on a white-
board look intimidating. We’d start ask-
ing basic questions about the quality of
our schedules and processes. When we
“improved” the way we managed the
meeting by putting the change requests
and waivers online, a curious thing hap-
pened: We no longer worried about hav-
ing 200 change requests, or even 2,000.
Without the visibility of the whiteboard,
we became numb to the psychological
impact of all those change requests.

W e have to control our changes.
We try to do it well. Yet, unless
we keep our eyes and minds

wide open to the dynamics of the situa-
tion, our tactical success will ensure our
strategic failure. Oh, my head hurts to
think about it, but that’s how it is in the
nonlinear world of software processes.
Be warned ye bureaucrats. Just when you
get all your drudges in a row, reality
bursts in and breaks the spell. ❖

CHALLENGES
Many of the technological and ethical

problems that remain unresolved in exist-
ing smart-card systems are no less promi-
nent in future systems. On the technical
side, wireless-network ubiquity, commu-
nication channel bandwidth, support for
mobility, server interoperability, user
authentication, encryption, and system
robustness are just a few of the challenges.

Challenges also arise because of the
system’s ability to collect sensitive and
personal user data. Since a highly mobile
system like the Smart Badge is more vul-
nerable to misuse than a stationary sys-
tem, abuse of such data and user privacy
become major ethical issues. To address
these concerns, it will be necessary (on
the technical side) to provide user
authentication, anonymous transactions,
and secure tunneling.

Other challenges include design trade-
offs between power, latency, and cost.
Sensors and untethered communication
increase the power consumption of
devices. System latency also becomes a
concern if it impedes the application.
Finally, any system design must address
cost. How will we build these systems,
and who will pay for them? Some appli-
cations may need more than one service
from different providers. How will ser-
vice, transport, and client providers share
revenue?

F uture smart-card and Smart Badge
systems represent a large investment
in integrated engineering, but the

investment can pay off by creating new
business opportunities. These systems
consume a wide variety of revenue-gen-
erating services and promote emerging
technologies like wireless networks and
biometrics. By conforming to user expec-
tations and thus being easy to use, these
systems could potentially attract a large
user base and eventually change the way
people and technology interact in daily
life. ❖

Mark T. Smith is a project manager in
the Visual Computing Department at
Hewlett-Packard Laboratories, Palo
Alto, Calif. Contact him at msmith@
hpl.hp.com.

Integrated Engineering
Continued from p. 112

.




