
This is risk-based testing:

1. Make a prioritized list of risks.

2. Perform testing that explores each risk.

3. As risks evaporate and new ones emerge, adjust

your test effort to stay focused on the current crop.

Any questions? Well, now that you know what

risk-based testing is, I

can devote the rest of the

article to explaining why

you might want to do it,

and how to do it well.

November/December 1999 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
23

TestingTesting

James Bach on
Risk-Based

Testing
How to conduct heuristic risk analysis

by James Bach

QUICK LOOK

■ The difference between
inside-out and outside-in analysis

■ Sample risk lists to guide your
efforts

■ Three ways to organize
risk-based testing

Why Do Risk-Based Testing?
As a tester, there are certain things you must do. Those
things vary depending on the kind of project you’re on,
your industry niche, and so on. But no matter what else you
do, your job includes finding important problems in the
product. Risk is a problem that might happen. The magni-
tude of a risk is a joint function of the likelihood and impact
of the problem—the more likely the problem is to happen,
and the more impact it will have if it happens, the higher
the risk associated with that problem. Thus, testing is moti-
vated by risk. If you accept this premise, you might well
wonder how the term “risk-based testing” is not merely re-
dundant. Isn’t all testing risk-based?

To answer that, look at food. We all have to eat to live.
But it would seem odd to say that we do “food-based liv-
ing.” Under normal circumstances, we don’t think of our-
selves as living from meal to meal. Many of us don’t keep
records of the food we eat, or carefully associate our food
with our daily activities. However, when we are prone to eat
too much, or we suffer food allergies, or when we are in
danger of running out of food, then we may well plan our
lives explicitly around our next meal. It is the same with
risk and testing.

Just because testing is motivated by risk does not mean
that explicit accounting of risks is required in order to orga-
nize a test process. Standard approaches to testing are im-
plicitly designed to address risks. You may manage those
risks just fine by organizing the tests around functions, re-
quirements, structural components, or even a set of prede-
fined tests that never change. This is especially true if the
risks you face are already well understood or the total risk is
not too high.

If you want higher confidence that you are testing the
right things at the right time, risk-based testing can help. It
focuses and justifies test effort in terms of the mission of
testing itself. Use it when other methods of organizing your
effort demand more time or resources than you can afford.

If you are responsible for testing a product where the
impact of failure is extremely high, you might want to use a
rigorous form of risk analysis. Such methods apply statistical
models and/or comprehensively analyze hazards and failure
modes. I’ve never been on a project where we felt the cost of
rigorous analysis was justified, so all I know about it is what
I’ve read. One well-written and accessible book on this subject
is Safety-Critical Computer Systems by Neil Storey. There is
also a technique of statistically justified testing taught by John
Musa in his book Software Reliability Engineering.

There is another sort of risk analysis about which rela-
tively little has been written. This kind of analysis is always
available to you, no calculator required. I call it heuristic risk
analysis.

Heuristic Analysis
A heuristic method for finding a solution is a useful
method that doesn’t always work. This term goes back to
Greek philosophers, but George Polya introduced it into
modern usage in his classic work How to Solve It. Polya
writes, “Heuristic reasoning is reasoning not regarded as fi-
nal and strict but as provisional and plausible only, whose
purpose is to discover the solution of the present problem.”

Heuristics are often presented as a checklist of open-

ended questions, suggestions, or guidewords. A heuristic
checklist is not the same as a checklist of actions that you
might include as “steps to reproduce” in a bug report. Its
purpose is not to control your actions, but to help you con-
sider more possibilities and interesting aspects of the prob-
lem. For a wonderful set of heuristics for developing soft-
ware requirements, see Exploring Requirements: Quality
Before Design, by Don Gause and Gerald M. Weinberg.

Two Approaches to Analysis
Let’s look at some heuristics for exploring software risk. I
think of risk analysis as either “inside-out” or “outside-in.”
These are complementary approaches, each with its own
strengths.

INSIDE-OUT
Begin with details about the situation and identify risks as-
sociated with them. With this approach, you study a prod-
uct and repeatedly ask yourself “What can go wrong here?”
More specifically, for each part of the product, ask these
three questions:

■ Vulnerabilities What weaknesses or possible failures are there in this
component?

■ Threats What inputs or situations could there be that might exploit a
vulnerability and trigger a failure in this component?

■ Victims Who or what would be impacted by potential failures and how
bad would that be?

This approach requires substantial technical insight,
but not necessarily your insight. The times I’ve been most
successful with inside-out risk analysis were when making
“stone soup” with a developer. I brought the stones (the
heuristics); he brought the soup (the facts).

Here’s what that looks like: In a typical analysis session
we find an empty conference room that has a big white-
board. I ask “How does this feature work?” The developer
then draws a lot of scrunched boxes, wavy arrows, crooked
cylinders, and other semi-legible symbology on the board.
As he draws, he narrates the internal workings of the prod-
uct. Meanwhile, I try to simulate the mechanism in my head
as fast as the developer describes it. When I think I under-
stand the process or understand how to test it, I explain it
back to him. The whiteboard is an important prop because I
get confused easily as I’m assimilating all the information.
When I lose the thread of the explanation, I can scowl mys-
teriously, point to any random part of the diagram, and say
something like “I’m still not clear on how this part works.”

As I come to understand the mechanism, I look for po-
tential vulnerabilities, threats, and victims. More precisely, I
make the developer look for them with questions such as:

■ [pointing at a box] What if the function in this box fails?

■ Can this function ever be invoked at the wrong time?

■ [pointing at any part of the diagram] What error checking do you do
here?

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing November/December 1999
24

November/December 1999 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
25

■ [pointing at an arrow] What exactly does this arrow mean? What would
happen if it were broken?

■ [pointing at a data flow] If the data going from here to there were
somehow corrupted, how would you know? What would happen?

■ What’s the biggest load this process can handle?

■ What external components, services, states, or configurations does
this process depend upon?

■ Can any of the resources or components diagrammed here be tam-
pered with or influenced by any other process?

■ Is this a complete picture? What have you left out?

■ How do you test this as you’re putting it together?

■ What are you most worried about? What do you think I should test?

This is not a complete list of questions, but it’s a good
start. Meanwhile, as the developer talks, I listen for whether
he is operating on faith or on facts. I listen for any uncer-
tainty or concern in his voice, hesitations, or a choice of
words that may indicate that he has not thought through
the whole problem of requirements, design, or implementa-
tion. Confusion or ambiguity suggests potential risk. When
we identify a risk, we also talk about how I might test so as
to evaluate and manage that risk.

A session like this lasts about an hour, usually—and I
leave with an understanding of the feature, as well as a list
of specific risks and associated test strategies. The tests I
perform as a result of that conversation serve not only to
focus on the risks, but also to refute or corroborate the de-
veloper’s story about the product.

There are wonderful advantages to this approach, but
it requires effective communication skills on the part of
the developer and tester, and a willingness to cooperate
with each other. You can perform this analysis without the
developer, but then you have the whole burden of studying,
modeling, and analyzing the system by yourself.

Inside-out is a direct form of risk analysis. It asks
“What risks are associated with this thing?” Inside-out
is the opposite of the outside-in approach, which asks
“What things are associated with this kind of risk?”

OUTSIDE-IN
Begin with a set of potential risks and match them to the
details of the situation. This is a more general approach
than inside-out, and somewhat easier. With this approach,
you consult a predefined list of risks and determine
whether they apply here and now. The predefined list may
be written down, or it may be something burned into your
head by the flames of past experience. I use three kinds of
lists: quality criteria categories, generic risk lists, and risk
catalogs.

Quality Criteria Categories These categories are de-
signed to evoke different kinds of requirements. What
would happen if the requirements associated with any of
these categories were not met? How much effort is justi-
fied in testing to assure they are met to a “good enough”

standard?

■ Capability Can it perform the required functions?

■ Reliability Will it work well and resist failure in all required situations?

■ Usability How easy is it for a real user to use the product?

■ Performance How speedy and responsive is it?

■ Installability How easily can it be installed onto its target platform?

■ Compatibility How well does it work with external components and
configurations?

■ Supportability How economical will it be to provide support to
users of the product?

■ Testability How effectively can the product be tested?

■ Maintainability How economical will it be to build, fix, or enhance
the product?

■ Portability How economical will it be to port or reuse the technology
elsewhere?

■ Localizability How economical will it be to publish the product in
another language?

I cobbled together this list from various sources includ-
ing the ISO 9126 standard, Hewlett Packard’s FURPS list
(Functionality, Usability, Reliability, Performance, Supporta-
bility), and a few other sources. There is nothing authorita-
tive about it except that it includes all the areas I’ve found
useful in desktop application testing. I remember this list us-
ing the acronym CRUPIC STeMPL. To memorize it, say the
acronym out loud and imagine that it’s the name of a Ro-
manian hockey player. With a little practice, you’ll be able to
recall the list any time you need it.

Generic Risk Lists Generic risks are risks that are uni-
versal to any system. These are my favorite generic risks:

■ Complex anything disproportionately large, intricate, or convoluted

■ New anything that has no history in the product

■ Changed anything that has been tampered with or “improved”

■ Upstream Dependency anything whose failure will cause cascading
failure in the rest of the system

■ Downstream Dependency anything that is especially sensitive to
failures in the rest of the system

■ Critical anything whose failure could cause substantial damage

■ Precise anything that must meet its requirements exactly

■ Popular anything that will be used a lot

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing November/December 1999
26

■ Strategic anything that has special importance to your business, such
as a feature that sets you apart from the competition

■ Third-party anything used in the product, but developed outside the
project

■ Distributed anything spread out in time or space, yet whose elements
must work together

■ Buggy anything known to have a lot of problems

■ Recent Failure anything with a recent history of failure

Risk Catalogs A risk catalog is an outline of risks that
belong to a particular domain. Each line item in a risk cata-
log is the end of a sentence that begins with “We may expe-
rience the problem that...” Risk catalogs are motivated by
testing the same technology pattern over and over again.
You can put together a risk catalog just by categorizing the
kinds of problems you have observed during testing. Here’s
an example of part of an installation risk catalog:

(For an example of a very broad risk catalog, see Ap-
pendix A of Testing Computer Software by Cem Kaner,
Jack Falk, and Hung Nguyen.)

■ Wrong files installed

temporary files not cleaned up

old files not cleaned up after upgrade

unneeded file installed

needed file not installed

correct file installed in the wrong place

■ Files clobbered

older file replaces newer file

user data file clobbered during upgrade

■ Other apps clobbered

file shared with another product is modified

file belonging to another product is deleted

■ Hardware not properly configured

Hardware clobbered for other apps

Hardware not set for installed app

■ Screen saver disrupts install

■ No detection of incompatible apps

apps currently executing

apps currently installed

■ Installer silently replaces or modifies critical files or parame-
ters

■ Install process is too slow

■ Install process requires constant user monitoring

■ Install process is confusing

User interface is unorthodox

User interface is easily misused

Messages and instructions are confusing

You can use these risk lists in a number of ways. Here’s
one that works for me:

1. Decide what component or function you want to analyze. Are
you looking at the whole product, a single component, or a list of
components?

2. Determine your scale of concern. I like to use a scale of “nor-
mal,” “higher,” and “lower.” Everything is presumed to be a normal
risk unless I have reason to believe it’s a higher or a lower risk. Use a
scale that’s meaningful to you, but beware of ambiguous scales, or
scales that appear more objective than they really are.

3. Gather information (or people with information) about the
thing you want to analyze. Obviously, you need to know some-
thing about the situation in order to analyze it. When I’m doing “out-
side-in” analysis on a product, I gather whatever information is con-
venient, make a stab at the analysis, then go to the people who are
more expert than I and have them critique the analysis. Another way
to do this is to get all those people in the same room at the same
time and do the analysis in that meeting.

4. Visit each risk area on each list and determine its importance
in the situation at hand. For each area, ask “Could we have prob-
lems in this area? If so, how big is that risk?” Record your impres-
sion. Think of specific reasons that support your impression. If you’re
doing this in a meeting, ask “How do we know that this is or is not a
risk? What would we have to know in order to make a better risk es-
timate?”

5. If any other risks occur to you that aren’t on the lists, record
them. Special risks are bound to occur to you during this process.

6. Record any unknowns, which impact your ability to analyze
the risk. During the process, you will often feel stumped. For exam-
ple, you might wonder whether a particular component is especially
complex. Maybe it’s not complex at all. What do you need to know in
order to determine that? As you go through the analysis, it helps to
make a list of information-gathering “to do” items. At some point, go
get that information and update your analysis.

7. Double-check the risk distribution. It’s common to end up with a
list of risks in which everything is considered to be equally risky. That
may indeed be the case. On the other hand, it may be that your distri-

November/December 1999 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
27

bution of concerns is skewed because you’re not willing to make tough
choices about what to test and what not to test. Whatever distribution
of risks you end up with, double-check it by taking a few examples of
equal risks and asking whether those risks really are equal. Take some
examples of risks that differ in magnitude and ask if it really does
make sense to spend more time testing the higher risk and less time
testing the lower risk. Confirm that the distribution of risk magnitudes
feels right.

I recommend including a variety of people from a vari-
ety of roles in this analysis. Use people from Technical Sup-
port, Development, and Marketing, for instance.

Three Ways to Organize Risk-Based
Testing
Whether you employ outside-in, inside-out, or some hybrid
approach to doing the analysis, I can suggest three different
ways to communicate the risks and organize the testing
around those risks: risk watch list, risk/task matrix, or com-
ponent risk matrix.

RISK WATCH LIST
This is probably the simplest way to organize risk-based
testing. A risk watch list is just a list of risks that you peri-
odically review to ask yourself what your testing has re-
vealed about those issues. If you feel you don’t have
enough recent information about problems in the product
that are associated with a risk, then do some more testing
to gather that information.

RISK/TASK MATRIX
The risk/task matrix consists of a table with two columns.
On the left is a list of risks; on the right is a list of risk miti-
gation tasks associated with each risk. Sort the risks by im-
portance, with the most important risks at the top. Think of
each row in the matrix as a statement of the form “If we’re
worried about risk X, then we should invest in tasks Y.”

The risk/task matrix is useful mainly as a tool in nego-
tiating for testing resources. I like using this technique in
situations where Management would not accept poor test-
ing, yet also would not provide enough testing staff to do
that job. The matrix helps bring management expectations
in line with available resources. It’s a lot easier to get test-
ing resources when you can explain the impact of not hav-
ing enough.

A disadvantage of this approach is that some tasks mit-
igate more than one risk. Also, some
mitigation tasks cost so much or take
so much time that they actually add
more problems to the project than
they’re worth in terms of the problems
they help detect. Still, it’s a simple way
to show the gross relationships be-
tween risk and test effort on a project-
wide basis.

COMPONENT RISK MATRIX
The component risk matrix consists of
a table with three columns. Break the

product into thirty or forty areas or components. These
components can be physical code (such as “the install pro-
gram”), functions (such as “print”), or data (such as “clipart
library”). In other words, a component is anything that is
subject to testing. In the leftmost column of each row of the
matrix, list a component. In the rightmost column, list all of
the known risk heuristics that indicate significant risk in
that component (if a risk heuristic applies equally to all
components, don’t bother listing it). In the middle column,
write a summary risk judgment of “higher,” “lower,” or “nor-
mal” (see Table 1).

What this matrix helps you do is help communicate and
negotiate which components will get more effort. I use a gen-
eral rule that higher-risk items get twice the effort as normal
items, which in turn get twice the effort as the components
that are lower-risk. (This is just an approximation, of
course.)

The risk heuristics are included in the table because
they help provoke questions about your risk judgments, but
remember—there is no hard relationship between the
heuristics and any particular judgment. You may find your-
self in a situation where you will argue that one component
is more risky than another, even though the first compo-
nent has more heuristics driving its risk than the second.
Risk analysis is a matter of evaluating factors that influ-
ence risk, not merely counting them.

As the project proceeds, you pay testing attention to dif-
ferent components in rough accord with their associated lev-
els of risk. A disadvantage of this approach is that it focuses
only on highlighting risks that increase the need to test, and
not on those factors that decrease the need to test. You could
add those risk-lowering factors into the matrix, of course, but
I find that it makes the matrix too complicated.

Making It All Work
Always keep this in mind: your risk analysis is going to be
incomplete and inaccurate to some degree, and it may be
very wrong. All you really have at the beginning of a project
are rumors of risks. As the project progresses, and you gain
information about the product, you should adjust your test
effort to match your best estimation of risk. Also, to deal
with the risk of poor risk analysis, don’t let risk-based test-
ing be the only kind of testing you do. Spend at least a
quarter of your effort on approaches that are not risk-fo-
cused—such as field testing, code coverage testing, or
functional coverage testing. This is called the principle of
diverse half-measures: use a diversity of methods because
n o

TABLE 1

C O M P O N E N T R I S K R I S K H E U R I S T I C S

Printing Normal Distributed, Popular

Report Generation Higher New, Strategic, Third-party, Complex,
Critical

Installation Lower Popular, Usability, Changed

Clip Art Library Lower Complex

single heuristic always works.
Finally, if I were to choose two vital factors needed to

make risk-based testing work, I would name experience
and teamwork. Over a period of time, any product line or
technology will reveal its pattern of characteristic problems
(assuming that you pay attention to problems found in the
field). Learn from that. And do whatever you can to invite
different people with different points of view into the risk
analysis process.

If there’s a magic to risk-based testing, it’s the magic of
noticing the signs and clues, all around you, about where the
problems lie. Some people do this without consciously think-
ing about it, and maybe that’s good enough. But when a prob-
lem slips by you because you couldn’t do perfectly exhaustive
testing, you may be called upon to explain why you did what
you did. Management may assume that you did a sloppy job,
and they may not be impressed with the standard argument
that all testing is incomplete. That’s when it’s nice to have that
risk list or matrix. With risk-based testing, you can show Man-
agement that you strive to make the best use of the resources
they invest. They’ll respect you for that.

I thank Cem Kaner and Brian Lawrence for their advice
and criticism in the development of this article.

James Bach is the founder of Satisfice, Inc., a test training
and consulting company. A pioneer in the emerging disci-
plines of Good Enough quality and exploratory testing,
James specializes in expert testing under chaotic condi-
tions. He can be reached at james@satisfice.com.

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing November/December 1999
28

