
Copyright 1999, James Bach - 1 -

Good Practice
Hunting
by James Bach, james@satisfice.com

First published in Cutter IT Journal
February, 1999

Imagine this conversation between a driving
consultant and a client looking for best practices
for his delivery truck company:

Client: “I want my drivers to drive at the right
speed. In your expert opinion, what is the right
speed?”

Consultant: “Hmm. I can’t give you a specific
number. It depends on a lot of factors.”

Client: “Surely there’s a speed that most good
drivers generally drive. I don’t need abstract
driving theory, I just want to know what’s the
best practice out there.”

Consultant: “Good drivers tailor their speed to
the situation. There isn’t any one speed
that’s best.”

Client: “Oh, obviously we must hire good
drivers. That goes without saying. All I really
need from you is to tell me what our standard
speed should be, based on what the best drivers
do. Then our drivers will either use that speed or
propose an alternative, as long as they justify
their plan and follow it. We’re ISO 9000
registered, you know.”

Consultant: “The driving process requires
different speeds at different times. Any given
drive may involve speeds of 0 to 70 miles per
hour. You can’t know the speeds in advance,
except very generally. The driver must make a
situational judgment.”

Client: “Wow, that sounds like it’s up to the
creativity of individual drivers. How will we get
to Level 2 on the Driving Maturity Model? I
don’t need a consultant who says‚ ‘it depends’
and offers loosey-goosey guidelines; I need a
concrete practice. Capers Jones gives concrete
advice and hard numbers— why can’t you?”

I know, this is a silly conversation. It’s down-
right ridiculous. No one who knows
anything about driving would ever seek to settle
on a single, standard “best speed.” Yet
in every essential respect, this dialogue is typical
of how most of us, most of the time, talk about
best practices in SQA and testing. We look for
the one “right” answer, rather than considering
the context. We includes me, too. Just yesterday,
I caught myself, mid-sentence, arguing that a
certain practice was “bad,” even though I had not
considered the context in which it was suggested.
It’s a seductive habit, but one that’s well worth
kicking.

The goodness of a practice is not an intrinsic
attribute, of course. Rather, it emerges from the
context of its use. I find it useful to think of that
context in terms of capability, goals, and
situation. Capability is how able we are to do
what needs to be done. Goals are what we want
to achieve. And situation is a catchall that
represents the current state of the world as it
relates to the practice.

The driving dialogue seems ridiculous only
because, in that case, the roles of capability,
goals, and situation are pretty obvious: a
competent licensed driver will choose a
reasonable speed; the goal is to deliver quickly
without crashing or getting a ticket; situational
factors that affect speed are commonly
understood. Capability, goals, and situation are
not nearly as clear in the case of software
methodology. So, it’s harder to determine the
right course of action, and because it’s harder we
are all the more desperate to believe in inherently
good or bad practices. We want something to
hold onto.

MYTHOLOGIES OF TESTING
Unfortunately, we aren’t very good at observing
and evaluating practices. So determining good
practice is more often a process of mythology,
not engineering or science. By that I mean our

James Bach

Copyright 1999, James Bach - 2 -

analysis of practice is generally unsystematic,
anecdotal, biased, history-bound, personality-
driven, vague, exaggerated, and otherwise invites
poetic license. And we generally don’t question
our myths, passed down as they are from Elders
or Experts, even when they are disseminated
outside of the context in which they were
originally conceived and blessed.

Part of the problem is that it’s hard to know what
practices we are actually using. Does your
organization perform unit testing? Are you sure?
Unit testing is almost universally recommended
and, according to more than one textbook on my
bookshelf, is almost universally practiced. Well,
that’s interesting, because in my experience very
few companies perform unit testing, and of those
that do, there is a wide variation in the practice
from developer to developer.

Part of this apparent paradox can be explained by
looking at the definition of the term. I understand
the notion of unit testing as the testing of
individual modules, functions, or classes without
regard to their integration with the rest of the
system. The goal of unit testing is to find
problems before integration, and to find those
problems that are difficult to isolate on a
subsystem or system level. The thing is, I’ve
found that this definition is not the one in
popular use. In my experience, unit testing more
often means any test activity performed by a
developer in the course of development—and
most developers have no training in or passion
for testing. It’s become a minor hobby of mine to
ask developers to describe what they do when
they unit test. The typical answer is some
variation of “I exercise the code and see if it
works,” which I’ve discovered could mean
anything up to and including “I don’t do
anything.”

The often startling difference between the talk
and the actual walk is what I call a methodology
gap. Unit testing stands out as a particularly stark
example, but I find such gaps, to one degree or
another, everywhere I look in typical software
projects. Anyone who seeks to assess practices
simply by asking practitioners if they’re
practicing them is likely to get a mythological
and inaccurate picture of that organization.

Another part of the problem is that we don’t have
very good theoretical models of software
engineering. Software engineering is generally
treated as a process of efficiently creating

software that correctly and dependably fulfills a
specification. Testing, in that paradigm, is a
process of generating the smallest set of tests that
will reveal discrepancies between the software
and its specification. That is certainly an
interesting theoretical basis for testing, but I
daresay it has not proven very helpful for the
overwhelming majority of all the testing we do
in this industry. Other branches of science offer
models that might put our mythology on better
ground. Economics, game theory, and decision
theory offer insight into making tradeoff
decisions. Principles of cognitive psychology
and epistemology could help us understand how
testers learn about and evaluate what they test.
General systems theory offers ways to
decompose and analyze the behavior of complex
systems.

As a result of our incomplete theories and
inadequate information, some of the most
common and accepted wisdom about testing is at
best misleading and at worst damaging:

“It’s important to repeat the same tests
on each new build.”

Not necessarily. This practice is usually justified
by the frustration we feel when a problem is
introduced into a product that could have been
detected by an old test but wasn’t because we
never reran the old test. But my experience
shows (caution: this, too, is mythology) that this
problem is usually far smaller than the problem
of not finding defects that were in the product all
along because we were too busy rerunning old
tests and didn’t create enough new and different
tests.

“It’s important to document all test cases
and procedures.”

Maybe, maybe not. Documenting test cases and
procedures has at least two negative effects: (1)
it tends to result in less overall testing, because
of the time needed to create and maintain
documentation, and (2) it tends to limit the
variety of testing, because having documented
the tests, testers tend to feel obligated to execute
only those tests. In the absence of a pressing
need for external accountability or a pressing
need to share exact test cases with lots of other
people, it is probably better, in my opinion, not
to document specific tests. Document just
enough to remind you to cover what you need to
cover and report what you need to report.

Copyright 1999, James Bach - 3 -

“It’s important for testing to be involved
early in the test cycle.”

That might be a complete waste of time. Most
testers want to be involved early in the cycle, but
few know what to do when they find themselves
there. I can think of a lot of things to do early in
a test project, but they require the skills of a
technically savvy senior tester or test manager.
An unsophisticated or indiscreet tester will only
alienate the development staff.

“It’s important to create tests based on
specifications well before it’s time to
execute them.”

Not so fast. Specifications are notoriously and
almost universally inadequate for the generation
of actual tests. Attempts to do that usually result
in a lot of mostly useless documentation. It’s
certainly useful to examine specifications for
testability and consult with the developers about
improving testability, but that requires unusual
skill. Reporting defects in the specification may
be useful, too, but that requires unusual rapport
and diplomacy.

Each of these commonly suggested practices is
good to do—in certain situations, when you’re
trying to accomplish certain goals, and you have
a staff capable of performing them. They are not,
however, inherently good practices.

I’m not against mythology. The kind of research
that might provide a comprehensive scientific
foundation for methodology is expensive and,
for the most part, infeasible. So, we’re stuck with
mythology—this article is mythology—but let’s
be open about it. If a testing practice seems to
make sense, do it. But beware of common
wisdom.

COMMUNITIES OF PRACTICE
My concerns about the situational goodness of
practices and the difficulty of observing them
strike many practical people as academic, and
that’s understandable— the fact is that in
software development, we can think of many
practices that most of us will agree are generally
good or generally bad. Some companies have
reported tremendous success with certain
practices.

Yet the reason any practice seems inherently
good or bad is that we make assumptions about
capability, goals, and situation. Though we are

often not even aware of those assumptions, they
create a foundation for evaluating and evolving
practices as if they were standalone entities.
Within a community of people who have a
bedrock of shared assumptions (something I call
a community of practice), it is indeed meaningful
to say that one practice is good and another is
bad. “Most of us” agree because we belong to
the same community, and we aren’t even in
dialog with practitioners in other communities.

What made it possible for other fields of
engineering to produce standard handbooks of
good practices and certification tests for
engineers is that each domain of traditional
engineering represents a sufficiently cohesive
community of practice and has evolved a
theoretical and technological foundation to
support the evaluation of its practices. These
communities can reasonably account for the
variables of situation, goals, and capability. The
problem for the software industry is that we
consist of umpteen overlapping and fragmented
communities, yet our discussions of practice
don’t account for those communities. In the
testing world, I see at least the following broad
communities of practice:

• Regulated: obligated to prove compliance
with external standards

• High reliability: spares no effort or
expense to produce a high-reliability product

• Academic: explores theory at the expense
of practical applicability

• Contract-driven: obligated to fulfill a
specific contract with a specific customer

• Market-driven: aims to fulfill a general
market need in a competitive environment

• Embedded: provides software only as an
adjunct to a hardware system

• IS: provides business-critical technology for
internal users

Cutting across these communities are others that
are specific to application domains (such as
medical information systems, process control
systems, or desktop business applications) or
those that are specific to particular technologies
(such as relational databases, Internet, or Java).

Copyright 1999, James Bach - 4 -

WE’RE ALL METHODOLOGISTS
If testing practices are based on mythology, and
that mythology varies from community to
community, where does that leave us? It leaves
us to our own devices, more or less. To the
extent that we pursue excellence as testers and
test managers, each of us must become our own
methodologist. Therein lies another problem. If
there’s one thing I know for absolute certain as a
full-time methodologist, it’s that most people
have no patience for discussing process.
Nevertheless, I don’t see how it’s possible to do
truly and demonstrably excellent testing in this
business unless you take control and ownership
of testing mythology.

Doing methodology means observing and
puzzling over the forces that influence how we
do our work and struggling to articulate models,
methods, and heuristics that help us grasp and
communicate the essence of the testing craft.
One humble and helpful tool I can offer is the
following list of questions. When I am
considering adopting a testing practice— for
example, using a new test plan template or test
tool— I walk through this list:

1. What objectives are served by this practice?
What pain will it resolve?

2. Are those important objectives? Important to
whom?

3. In what way are those objectives already
served by some other means?

4. What would a highly successful
implementation of this practice be worth?

5. How much energy will be required to make it
happen? Is there a simpler, cheaper solution?

6. What are the prerequisites for adopting this
practice (e.g., special training, methods, or
tools)?

7. How will this practice disturb or interact with
existing practices or processes?

8. What problems or risks will this practice
create?

9. How will we know that the practice is
helping? How will we assure its quality?

10. If it isn’t helping, what will we do then?

11. How much of this practice will be enough, or
too much? Can a little of it make a big impact?

12. What alternatives are there to this practice?
What if we do nothing?

13. What simple, achievable, self-contained step
can be taken toward the new practice?

I recently had a brief argument with my friend
and colleague Johanna Rothman on the subject
of doing regression testing on specific defects
that had already been fixed. She thought it was
very important to recheck fixed bugs on a regular
basis; I thought it was a waste of time. Finally I
rolled out some data to prove my point
(mythology alert: this data is from a single
project, several years ago), and I told her that on
a population of 2,000 defects fixed over a six-
month period, I had measured only a 2%
recurrence rate. Aha, but Johanna had data of her
own that showed a recurrence of 40%! When she
said that, I felt incredulous for a moment, then
almost said, “You’re crazy, Johanna. That
number has got to be wrong.” But I didn’t say it.
Another, wiser thought popped up, and I asked
instead, “Johanna, how can we account for the
difference in our data?” Well, we worked it out,
and sure enough, I finally had to admit that for
her particular technology, rechecking certain
classes of old defects should be an essential part
of the test strategy. Situational practice wins
again.

And that’s the thought I want to leave you with.
The next time you feel the urge to pass ultimate
judgment on the goodness or badness of a testing
practice, pause a moment. It all depends.

❦

James Bach is an independent SQA consultant,
speaker, and writer. He can be reached at:

j.bach@computer.org
http://www.jamesbach.com

	Good Practice Hunting
	MYTHOLOGIES OF TESTING
	COMMUNITIES OF PRACTICE

