
Don’t you love it when a programmer or manager
makes ignorant statements about testing? You don’t?
Well, I do. At least they’re talking. My experience is

that most of my non-tester colleagues, no matter how smart
and talented they are in their own work, are pretty mixed-up
about my line of work. But if they don’t say anything, there’s
not a lot I can do about it. So, in a way, I feel better when I

hear one of them say something
like “You play with each feature
and see if it works, right?
What’s the big deal?”

Because if they talk, maybe
they’ll listen. If they listen,
maybe I can offer them a more
useful view of testing.

Maybe you think your co-
workers should already under-
stand how testing works. I feel
your pain. Now, get over it. You
are the testing specialist. You
like this stuff. Because you’re
good at it, the other project

roles can focus better on what they do well. Take their confusion as evidence that
you are needed.

In testing, it’s us versus them. Well, not really, but you may feel that way
sometimes. Good explanations help bring the team together. This is important, be-
cause the rest of the project team, including managers all the way up the chain,
won’t fully support your work unless they understand what you’re trying to do.

It Starts with Intent and Attitude
I suggest that you approach every explaining situation with the same intent: to
make your clients or co-workers more powerful and successful, to help them make
more effective decisions, and to help them know how to get the most out of your
work. Let that intent shine in your tone.

One way of granting power is to offer valuable information. If you explain the
dynamics of a test process to a project team, then the team can use that informa-
tion to “work the system” and get more of what they want from you. For instance, if
the programmers understand the benefits of testability, they are more likely to de-
sign the product in ways that allow you to compress the testing schedule.

However, knowing about testing is not the only way you help your clients be
more powerful. You also help them by not knowing and thus sharing the problem-
solving process with them. In other words, an alternative to “I know what to do, lis-
ten while I explain it” is “I’m not sure what the best test strategy would be. Let’s
discuss our ideas and try some-
thing that seems reasonable.” The
latter is the attitude of a student
of the craft, rather than an expert.
A true student studies, wonders,
listens, and works with other stu-
dents to piece things together.
The posture of a student conveys
more of a sense of speculation

www.s tqemagaz ine .com STQE November/December 2001
28

Process & TechniquesProcess & Techniques

QUICK LOOK

■ Good responses to common
questions

■ 9 basic principles of good hallway
explanations

Helping non-testers

understand and

support your work

by James Bach

Explaining Testing
toTHEM
JAMES BACH ON

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

November/December 2001 STQE www.s tqemagaz ine .com
29

than a tone of lecture. Oddly enough,
the more expert I become in the logic
of testing, the more I believe that what
I know is primarily speculation.

Being a student requires that you
come to terms with this basic truth:
you might be wrong. It’s because you
know you could be wrong that your
voice doesn’t sound icy and conde-
scending when you speak. You sound
confident, but not insufferable. Be-
cause you know you could be wrong,
you keep the smirk out of your voice
when you say things like “It would be
great if I could write a program that
would automatically test this product; I
just don’t know how to do that.”

The Hallway Dialogue
Explaining testing is a big subject.
Here, let’s focus on one part of the
challenge: the hallway explanation.
That’s the name I give to the kind of
explaining opportunity that comes up
in the natural course of a software
project, such as in a workday hallway
encounter.

I’m walking to my cube. Adam, the
development manager, is going the
opposite direction. He spots me.

ADAM: “Oh, James, we want to move
the schedule in by three weeks. I know
your schedule calls for eight full weeks
of testing after code freeze. Can you do
it in five? We may just not have the
time to test as much as we’d like.”

My first thoughts are that the guy
isn’t serious about quality. He’s a
jerk and I should slap him silly.
Heck, I’ll quit. I don’t need this...
These first thoughts are not the help-
ful ones. I let them scroll by. A mil-
lisecond later, a useful thought comes
to mind: perhaps Adam thinks that
the test schedule arises from factors
that are fully within my control. If
so, perhaps I can set him straight.

JAMES: “My schedule isn’t under my
control, Adam. Eight weeks is just an
estimate based on the complexity of
the product and the difficulties we
think we’ll have once it becomes
testable. It may require more than
eight weeks to test and fix. Or less. A
lot depends on the state of the technol-
ogy when we get it.”

Notice how I try to provide a short
menu of factors that influence the
schedule, so we can productively
work toward as short a test cycle as
is reasonable. I’m hoping he will ask
about these factors, in which case I’ll
find a whiteboard and make a
longer list for him. These factors
don’t have to be exactly right, just
good enough so we can talk about the
whole situation that we face, rather
than just the outcome preferred by
this one manager.

ADAM: “You can’t predict the schedule?”

Again my first thoughts seem un-
helpful: Maybe I’m a fraud. Maybe I
should be able to predict schedules.
Maybe everyone can do this but me.
If only I hadn’t been sick that day in
high school, I would know about
scheduling… These insecurities are
normal for those of us who work
hard to be good at our jobs. I let
these thoughts scroll by, too.

What would be an effective re-
sponse here? It seems to me that
Adam is looking for stark binary an-
swers (and maybe psychic ones) in
a situation that is too complex and
shaded for that. As in my first re-
sponse, I’ll try to answer in a way
that expands the dimensions of the
issue so that he and I can talk more
productively. I will also deploy a po-
tent tool: an example.

JAMES: “I don’t know how to precisely
predict the schedule. This work can go
fast or slow. It depends. On the Alaska
project, bug 2642—remember that
one?—took two weeks before we
found a fully reproducible case. It
turned out that the product was inter-
acting with a popular anti-virus scan-
ner. You know you were glad to have
that one fixed before we shipped, but
we couldn’t have predicted such a
thing in advance.”

ADAM: “I realize it’s hard to estimate.
But is it possible to squeeze the work
into five weeks?”

Now I’m wondering why Adam is
fixated on this time frame. He does-
n’t seem to be listening to me. If I an-
swer the question with an explana-
tion, he’ll just get annoyed. The trick
with hallway explanations is know-

ing when to lecture and when to shut
up. In this case, it’s time to listen
and empathize.

JAMES: “I see that bringing in the
schedule is important to you. Help me
understand the significance of five
weeks. What’s the deal, there?”

ADAM: “Well, during the early planning,
some senior managers got their dates
mixed up. All this time we’ve been
thinking that the ‘Release To Manufac-
turing’ date was June 30. Now it turns
out that’s the revenue date, and RTM
has to be at least three weeks earlier in
order to get the product into the
pipeline.”

JAMES: “What if the product just isn’t
ready for RTM at that time?”

ADAM: “It has to be.”

JAMES: “What if it isn’t?”

My aim with these questions is to
clarify the situation so we can deal
with reality and desire separately.
Then I can show that there is not one
choice here, but many choices. I do
this not only to be helpful; discover-
ing and clarifying possibilities is
also fundamental to the testing
craft, and every conversation is an
opportunity to demonstrate the way
testers think.

ADAM: “The VP isn’t going to like that.”

JAMES: “Well, that may be. But as a
tester, my job is to provide information
that helps the organization make better
decisions. I see more than one option
here. When it comes down to the wire,
the VP may prefer a late product to a
bad product. Or maybe he’d rather that
we strip some features.”

ADAM: “Why can’t we modify our strate-
gy and get everything we want? You
said yourself that testing might take
less than eight weeks. I’m looking for
ways to tighten up the whole process.
Work with me here.”

Now he sounds like he wants to en-
gage. He has implicitly accepted the
idea that there’s more than one
choice and uses that to suggest his
pet plan as one of the choices. This

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

www.s tqemagaz ine .com STQE November/December 2001
30

may sound like he’s co-opting the
argument, but the truth is that it
has co-opted him. By accepting that
there are choices, he is now obliged
to consider the factors that affect
our choices, which is what I need
him to do if he’s going to under-
stand testing.

JAMES: “Okay, let’s work on this. First,
I hope you understand that the testing
schedule is not under my sole control.
When our quality standard is very
high, we have to do more careful test-
ing. If Development delivers a product
that is highly unstable, some of our
testing may be blocked. If Develop-
ment delivers a product that’s hard
for us to learn, hard to diagnose, or
hard to control, then testing will crawl
along very slowly. If the bugs we do
find are elusive and intermittent, our
investigation and reporting will take
much longer. If the changes to the
product are not managed well
enough, we may have to do extensive
re-testing. And if the programmers
take a long time to fix the bugs, they
may not be ready to ship on time no
matter what testing remains to be
done. Do you see what I’m saying,
Adam? If you want to pull the sched-
ule in, then we have to look at what
drives the schedule.”

ADAM: “I see what you mean. What can
I do to help? Would it help if the pro-
grammers helped you test? If we ran
some of your test cases?”

JAMES: “We don’t have defined test cas-
es.”

ADAM: “Oh really? But wouldn’t testing
be more organized if you created test
cases in advance? Wouldn’t things go
more quickly that way?”

Uh-oh. Now I have to deal with be-
liefs about testing coming from a
non-tester. This triggers another set
of unhelpful defensive thoughts:
Your specifications are a mess, yet
you expect us to write museum-
quality test case documents?
Gimme a break… Unless I’m really
tired or I’ve just heard that I’m be-
ing targeted for a tax audit, I usual-
ly let those thoughts go, too. Instead,
I try to form the most sympathetic
interpretation of his words: He’s

right; sometimes it’s possible to de-
fine good test cases in advance, and
it’s no crime to hope that testers
could always do that, regardless of
the circumstances.

JAMES: “Yeah, you’d think so. Some-
times that’s exactly the right thing to
do. In our case, though, I don’t know
how to make that work. There’s too
much uncertainty. We could create test
cases, but they would be bad ones.
People who define tests substantially in
advance of having a product to test are
either doing good work based on a

very stable, well-defined technology, or
they’re doing bad work and bluffing
you. Our challenge is to create the spe-
cific tests as soon as we can do a good
job creating them, and no sooner.”

ADAM: “Then how do you control the
testing? Do you have a test plan?”

It’s a common misconception that a
process can only by controlled by
documented plans. This is my op-
portunity to introduce a different
way of thinking.

JAMES: “For the most part we use an
exploratory, risk-based test methodol-
ogy. If by ‘test plan’ you mean a set of
ideas that guide the test process, yes,
I have that. It’s not written down ex-
cept as notes in my notebook, but I
can share it with you if you want to
hear it. Actually, I was hoping you
could tell me if we’re on the right
track with our plan. We control the
testing by frequently reporting our
test status and adjusting our test strat-
egy based on the joint sense, among
the managers, of the product risks. In
other words, as a client of our test
process, I want you to participate in
controlling how we test.”

Words like “exploratory” and “risk-
based” are buzzword bait. I’m hop-
ing to provoke him into asking more
about how we test. But this can be a
risky maneuver. If I lay it on too
thick, I will give the impression of a
squid inking the waters.

ADAM: “What’s an exploratory test
methodology?”

He took the bait! He might suspect
that I’m bluffing. Good for him. He’s
paying attention. Now I want to
wrap up the explanation and end
with a strong suggestion for what he
can do that will get him what he
wants.

JAMES: “It’s like playing ‘twenty ques-
tions’ with the product. We test in a se-
ries of bursts. We simultaneously learn
about the product, design tests, exe-

cute them, and report bugs. Our test
coverage is based on a product model
that we improve as we go. We also use
a list of test heuristics—and I can show
them to you right now if you want. It’s
the fastest way I know to test a new
and unfamiliar product. Do you want
to make it go even faster? Then let’s
start getting the testers up to speed on
what this product is and how it works.
Let’s schedule an hour-long product
briefing for the testers, with another
hour of Q&A. Then we can start brain-
storming more specific test strategies
for use when you deliver the code to us
in two weeks. How about that?”

ADAM: “When we will know how long
the entire test process will take?”

JAMES: “Tell you what, Adam. Let’s sit
down right now and go over all the fac-
tors in detail: the risks, the various
testing tasks, the development tasks—
all that. Maybe we’ll find ways to
streamline the test process, but we
should also develop some other op-
tions in case—despite our fondest
hopes—the testing and fixing process
drags on.”

At this point it almost doesn’t matter
what he says. This is my last and
best offer. I want him to get what he
wants, and the price for that is to
slog through the details. If he de-
clines the meeting I propose, every-
thing as I explained is still just as
true. Ultimately, if the organization
elects to force the testing to be “com-

The trick with hallway explanations is knowing

when to lecture and when to shut up.

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

November/December 2001 STQE www.s tqemagaz ine .com
31

pleted” in five weeks, I’ll do what I
can and faithfully report my status.
We might be in good enough shape
by then, or they might ship the prod-
uct without knowing much about it.

This is a typical hallway explanation.
An explanation in the wild. It may oc-
cur in a project meeting instead of a
hallway, but the principle’s the same.
Note that it doesn’t matter whether you
agree or disagree with me about the
role or utility of any of my ideas about
testing. Insert your own ideas. What
I’m illustrating here is the give and
take of this kind of explanation, and
the forces that shape it. The point is,
we rarely get more than a few sen-
tences to explain our work. That’s why
having some examples ready (like the
sad story of bug 2642) or an analogy
(such as the “twenty questions” game)
is important. That’s why it helps to
practice reeling factors that influence
testing off the top of your head.

There’s no substitute for a lot of
practice, but there are several classes
out there that can help you build your
dialogue skills. Two that helped me be
a much more effective explainer were
Gerald Weinberg’s “Problem Solving
Leadership Workshop” and the
“Change Shop,” which covered the
whole spectrum of doing technical
work in teams.

Principles of Hallway
Explanations
There are nine basic principles of good
hallway explanations:

1. Speak from practice. Be real. Own
what you say. Avoid using someone
else’s explanations if you don’t feel
you fully understand them, because
skeptical listeners will cross-examine
you. Make it an ongoing project to im-
prove your understanding of the test-
ing craft—by watching how your
ideas change when you put them into
practice, and letting your ideas be in-
fluenced by how other people prac-
tice.

2. Be with your audience. Connect
with them. Put yourself in their shoes.
What does an executive vice president
care about? What is a technical sup-
port manager’s day like? What are a
project manager’s top three fears?

Gear what you say to the ambitions,
knowledge, and concerns of your lis-
tener.

3. Check your terms. Many times my
explanations have been foiled by unex-
pected differences in terminology.
Terms such as testing, test case, test
plan, regression test, and bug are what
I call danger words, because there are
many different definitions of these
terms floating around. If you find your-
self in a debate, consider briefly defin-
ing your terms as you go.

4. Show respect. Treat everyone as if
they are smart people who care about
quality as much as you do. Honor ob-
jections and questions. I find that I can
sometimes turn an otherwise hostile
audience around by interpreting objec-
tions as well-intentioned, insightful
concerns. It doesn’t matter whether
they really are well intentioned or in-
sightful. I treat them that way because
to do otherwise guarantees failure.

5. Provoke interesting questions. You
can’t productively explain something
to a person who has no curiosity. Pro-
voke your audience a little so they ask
questions. One way to do this is to sow
a few obvious ambiguities, jargon, or
contradictions into your explanation. If
your audience asks about them, say
“Good eye. I’m glad you asked about
that. That’s an important issue.” If they
don’t ask, then say “You’ve probably
noticed that there’s a contradiction
here. You would be right to question
it.” Either way, go on to explain the is-
sue better.

6. Explain things that matter. What
operational difference do your ideas
make? What do you want to have hap-
pen? How will we behave differently if
we all accept your view of testing?
Keep your eye on the mission behind
your explanation.

7. Be quick. Get to the point. Use
short sentences. Then maybe you’ll be
allowed to finish your explanation, in-
stead of being cut off before the
punch line.

8. Show how everyone is involved. I do
my best to construe the situation as a
team reality: we’re all in this together.
We all contribute. We all suffer when

things go wrong. If you find it difficult
to construe the situation as one in
which everyone plays a part, then stop
and think about whether the subject is
one you can successfully explain. If the
situation involves only you, then you’ll
bore your audience. If it involves only
them, you may sound like you’re
butting in where it’s not your business.

9. Be prepared. Develop a variety of
standard explanations and analogies in
advance and record them somehow.
Ideas for explaining testing occur to
me most often when I’m actually doing
testing, so I keep a notebook around
just to capture those ideas. Now I have
a pile of notebooks brimming with
fragments of explanations.

What If They Don’t
Believe You?
First, don’t worry too much. In the
movie Harvey, Jimmy Stewart uttered
the famous line: “In this world you
must be oh-so smart, or oh-so pleas-
ant. For years I was smart. I recom-
mend pleasant.” Sometimes you won’t
persuade. Your explanations will fail.
When that occurs, you do have another
resource: reality. So take deep breaths,
be pleasant, and keep your eyes open.
Events will unfold. The project will
struggle, or it won’t. Whatever hap-
pens, pay attention. Take notes about
the decisions that are made and how
events unfold.

In the end, the team will have a
shared experience. People take lessons
so much better from their own experi-
ence than from stories about strangers
or treatises of abstract logic. And those
shared experiences provide the basis
for new and compelling ideas, the next
time you have to explain testing to
them. STQE

James Bach is the founder of Sat-
isfice, Inc., a test training and con-
sulting company. A pioneer in the
emerging disciplines of Good
Enough quality and exploratory
testing, James specializes in expert
testing under chaotic conditions. He
can be reached at james@satisfice.
com.

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

STQE magazine is produced by
STQE Publishing, a division of Software
Quality Engineering.

http://www.stqemagazine.com/

