How to get people
and technology to
work togethar.

Roger Pressman

R. Pressman & Associates
620E. Slope Dr.

Orange, (T 06477
1sp0547@aol.com

James Bach, Software Testing Laboratories

ENOUGH ABOUT PROCESS:
WHAT WE NEED ARE HEROES

All software managers ave faced with three P’s
when software is to be built: people, problem, and
process. Should each of the three P's be given equal
weight? Should one be elevated to a more important
role than the others? Are managers focusing too much
attention on the wrong P?

James Bach offers answers to these questions and

argues i favor of software beroism. Bach bas been a
prograrnmer, tester, test Manager, or process consultant
for 12 years. He has run projects at Apple Computer
and Borland International, two companies that exempli-
[y both bealthy and unbealthy beroism. He is currently

the chief scientist for Software Testing Laboratories, of

Seattle. His book, Process Evolution in a Mad
World, will be published by McGraw-Hill in 1996.
According to Bach, beroic software people find a
way to solve problems, and successful
are projects are a sequence of prob-
lems encountered and effectively solved.
— Roger Pressman

I'LL GET RIGHT TO THE POINT.
At conferences and in journals, the
extraordinary attention we give to
software-development processes is
misplaced. Far too much is written
about processes and methods for
developing software; far too little
about the care and feeding of the
minds that actually write that software. Process is
useful, but it is not central to successful software
projects. The central issue is the human proces-
sor — the hero who steps up and solves the prob-
lems that lie between a need expressed and a
need fulfilled.

Heroism is a concept that evokes strong
images, so let me clarify. Heroism means going
beyond the borders of the known world and
returning with new knowledge or wealth. Because
any venture beyond a stock solution involves both
commitment and risk, the sustainable, healthy
sort of heroism requires judgment to know how
much commitment and risk is right for the situa-
tion. The movement toward process in our indus-
try is an understandable reaction against pathologi-
cal heroism: heroism for its own sake, in which
overcommitment and uncontrolled risk-taking is
the norm. Unfortunately, process advocates tend
to treat all heroism as pathological.

AHERO IS
SOMEONE
WHO TAKES
INITIATIVE
T0 SOLVE
AMBIGUOUS
PROBLEMS.

To bring the classical definition of hero into

the business and engineering milieu, [define a

hero as someone who takes initiative to solve

i ambiguous problems. Heroism cannot be auto-

mated; it cannot be predefined as a set of specific
actions or outcomes. Hence, there is no unam-
biguous way to teach or evaluate it. Despite its
mysterious nature, we must face the need for
heroism because in the world of software devel-
opment all problems are ambiguous. For every
formalism or pattern there is the ambiguous

. problem of knowing when and how to apply it.
| For every solved problem there is the metaprob-
i lem of adapting that solution to other, similar
. problems.

Heroism would only be a minor management
concern — of no more importance
than punctuality or style of dress —
if not for the startling complexity and
boundless ambition of our projects.
The well-known linear and hierar-
chical project-management methods
can’t cope with the load, and we
aren’t satisfied to perform only small
and uncomplicated projects. But
there are ways to enhance the capa-

ility of our nonlinear assets — our
people — and there are disciplines
such as organizational learning, sys-
tems thinking, complexity theory, chaos theory,
cybernetics, and psychology that we can employ
to that end.

As managers and methodologists, we com-
plain about hackers and cowboys, and they can be
a problem, but rather than dehumanize the
development process, we can address pathologi-
cal heroism as we create conditions in which
useful heroes are born and healthy heroes thrive.

HEROES ARE PEOPLE FIRST. The central issue is
people, but it isn’t the only one. Process sur-
rounds people and emanates from them. By
treating the dialogue of process and people as an
adaptive system, I find that some chaotic projects
become tractable, and strange behavior — such
as people deliberately creating poor-quality soft-
ware — becomes intelligible and even reason-
able. My point is this:

¢ Software is a product of people, not

MARCH 1985

some conceptualized process.

¢ People can be developed into effec-
tive leaders or, as I say, heroes.

¢ There are emerging disciplines that
provide a context for conceiving of pro-
jects as adaptive systems, rather than col-
lections of tasks and products.

¢ When we view projects in this
way, we are better able to understand
and influence the behavior of the peo-
ple who make them run.

Let me step back from this central
argument and provide a little context.

As far as we've progressed in the vari-

ous technologies of information systems, '
our industry still has great difficulty con- .

sistently developing reliable software.
We've tackled the problem from every
direction, it seems, but projects and
products continue to fail with alarming
regularity. We shake our heads and mut-
ter something about a “software crisis.”
One approach touted as a general
solution demands that we define and
control the software-development
process. The theory goes that, because
all products are the result of some
process, by controlling the quality of that
process, we can more effectively build
quality into the product. The Software
Engineering Institute’s Capability

Maturity Model is probably the best |
known software-process architecture that |

endorses this strategy. The process-con-

trol approach is generally addressed to !
entire organizations, which means, first |

and foremost, top management.

Another, very ditferent solution sug-
gests that we focus on the people who |

actually create the software and manage
the projects. The theory here is that each
software product is, as a system, the
unique result of a collaboration of human
minds; hence it pays to work on the skills
of collaboration, thinking, and software-
development methods, and to provide an
environment where those skills can be

V

effectively applied. This is the so-called

“peopleware” approach, a term popular-
ized by the book Peopleware: Productive
Projects and Teams, by Tom DeMarco
and Timothy Lister (Dorset House,
1987). One hallmark of this approach is
the application of psychological theory to
software development, such as Gerald

and Daniela Weinberg’s use of Virginia

Satir’s interaction model in their books

and seminars (Quality Software

Management, vols. 1-3, Dorset House,

1991-94). Another aspect of this

approach is its obvious reliance on

heroes. The peopleware idea is generally

addressed to lower level managers.
A third approach might

be called the “cowboy” or

“big magic” model. In this

view, gifted people create

software through apparent-

ly magical means, with no

particular guidance or sup-

port. This approach also

centers on heroes, but

pathologically so. It doesn’t

do much to grow or nur-

ture them. Rather, it tends

to wear them out. This

model is addressed more to the individ-

ual contributors themselves, and even

encourages management to “lead by

example” by performing as individual

engineers.

CLASH OF PARADIGMS. To put these
conflicting paradigms in perspective, we
must look closer at the suspicious word
“process.” The rollicking forums on
Compuserve and Usenet reveal patterns
of misunderstanding that seem to be
caused by the many faces of process.
Watts Humphrey himself distinguishes
between task- and entity-oriented
processes; between processes, process
models, and process architectures; and
between universal, worldly, and atomic
processes.

The term “process” has become over-
loaded. It allows us to talk about our
behavior as if it were some physical entity
separate from ourselves. This can be mis-
leading. Consider the apparently simple
question, “Do you have a process for X?”
This question can be interpreted as

¢ “Does X happen?”

+ “How do you know that X hap-
pens?”

¢ “Do you have an idea or program
that guides X as you do it:”

+ “Do you make a plan before you do X?”

+ “Do you have an ideal way of doing

X3

THE TERM
“PROCESS” IS
MISLEADING:
BEHAVIOR 1S
NOT A SEPARATE
ENTITY FROM

A PERSON.

¢ “Do you have a basis for under-
standing how you do X?”

No wonder it’s so difficult to tatk

about process. In an ideal situation, what
is idealized, planned, and implemented
are one and the same thing. But in real
life, the plan falls short of the ideal and
the implementation falls short of the
plan. Furthermore, the
planned and ideal process-
es may not even be pre-
sent.
I'd like to make two asser-
tions here. First, bringing
processes from description
to prescription to emer-
gence is a difficult and fun-
damentally ambiguous
problem. Second, a project
may be without a planned
or ideal process and still be
“using processes” in the sense that it is
guided by internalized process prescrip-
tions that are in turn guided by higher
level process models embedded within
experience, education, and insight.

If these are valid assertions, then
processes and heroes may be discussed
together, rather than in opposition.
Moreover, heroism is the better part of
process. Ideals are tools to make plans and
both are tools that must be implemented
by educated people to perceive the desired
actual result.

How do process manifestations relate
to the three approaches used to manage
software projects? Consider this excerpt
from CMM 1.1 regarding process control:

Even in undisciplined organizations, bhow-
ever, some individual software projects pro-
duce excellent results. When such projects
succeed, it is generally through the heroic
efforts of a dedicated team, rather than
through the proven methods of an organi-
2ation with a mature software process. In
the absence of an organization-wide soft-
ware process, repeating vesults depends
entirely on having the same individuals
available for the next project. Success that
depends solely on the availability of specific
individuals provides no basis for long-term
productivity and quality improvement
throughout an ovganization.

IEESOFTWARE

97

In this paragraph, process means ideal
descriptions that in a particular project
will result in tailored plans to suit the
needs of that project. The CMM asserts
that ideals and plans are the only basis for
consistent success. The peopleware
model counters that defined process is
only one element of support, and not the
most important one. The cowboy model
considers such processes to be an out-
right impediment.

I argue that the only basis for success
of any kind is the “heroic efforts of a
dedicated team.” Plans and ideals spring
from the heroic synthesis of research,
models, experience, and insight. Plans
and ideals come alive in the heroic act of
implementing them at the right time and
in the right proportion. Furthermore,
such heroism is not the province of specif-
ic gifted individuals who must never leave
the organization, but of teams of people
with varying gifts and ambitons who have
the support they need to do well.

How can these apparently disparate

models be integrated? The answer lies in
looking at projects as problem-solving sys-
tems rather than as collections of tasks.
The project-as-system includes the cow-
boys and the processes, but places people at
the center. Instead of focusing on tasks and
products, it focuses on roles and solutions.

People accept roles more readily than
tasks, and they are motivated to create
products when they see that the products
solve problems. Tasks and products can
readily be mapped onto this model, but
they are not the organizing principles. In
the peopleware model, process improve-
ment means a dialogue between process
concepts and the heroes who create and
interpret them. This leads to improve-
ment both in the heroes themselves and
in the expression of their processes.

HERO HELPER’S TOOLKIT. To help

heroes thrive, and to thrive on heroes,
our management inventory should

"include the following skills, tasks, and

habits:

¢ Recognize, observe and analyze
nonlinear systems (see Complexity, M.
Micchell Waldrop, Simon & Schuster,
1992); analyze and discuss qualitative
risk; accept risk and learn from failure.

¢ Diagnose and rectify incongruence:
inconsistency between thoughts, words,
and deeds.

¢ Identify and track problems more
carefully than tasks.

¢ Treat tasks and products as solu-
tions, rather than as ends in themselves.

¢ Continuously analyze, assign, and
clarify project roles.

¢ Collaborate with heroes, rather
than dominating or ignoring them.

¢ Understand the limitations of static
concepts, models, and plaas.

¢ Before asking, “what is the
process?” ask “who is the process?”

The world of business can show us the
way: See The Fifth Discipline (Peter Senge,
Doubleday, 1990) and Liberation
Management (Tom Peters, Fawcett
Columbine, 1992). .

=

Does Your Software Have Bugs?

You need

Insure++" 2.0 (formerly Insight++)

The most thorough runtime error detection available, period.

Insure++ automatically detects
on average 30% more bugs than
other debuggers, helping you to
produce higher quality software
faster.

Available for Sun/Spare, SGI,
DEC, Alpha, IBM RS/6000,
HP9000, SCO, and others.

BEST

Advanced Systems
Best Product Award 1994

Phone: (818) 305-0041

FAX: (818) 305-9048

bt N

S

a0
&>

ParaSoft Corporation

E-mail: Insure@ParaSoft.com

Insure++ finds all bugs related to:

v/ memory corruption
¢ dynamic, static/global,
and stack/local
v memory leaks
¢ memory allocation
* new and delete
v 1/O errors
v pointer errors
v library function calls
¢ mismatched arguments
¢ invalid parameters

Web: http://www.ParaSoft.com

Reader Service Number 6

