
A
pple Computer, 1988. I was
having a bad week. Apple’s
Development Systems Group
was producing a tool called
ASMCVT, the purpose of

which was to convert assembly source
files into a format suitable for a new
assembler that was still under develop-
ment. I’d been informed, as the leader of
the corresponding assembler test team,
that I would receive this tool in a few
days. But no one had sent down—liter-
ally, since the developers worked on a
floor above the lowly test department—
any details about the tool. When I vis-
ited the developer and explained to him
that we needed a spec in order to plan a
decent set of tests, he told me that the
tool was very simple and there would be
no problem writing one. 

The next day he left a single sheet of
paper on my chair. It was a handsome lit-
tle document, with “ASMCVT” embla-
zoned in bold 30-point Helvetica across
the top of the page. There were other
markings, too. As I recall, it had a couple
of horizontal rules, the developer’s full
name, the date, a number of category
titles with “N/A” written beside them,
and ample white space. At a distance it
might pass for a genuine technical docu-
ment—a tribute to the nameless scribe

who designed the document template.
But it contained only one sentence of
genuine technical content: “This tool
converts files from the old assembly for-
mat into the new format.”

The developer seemed surprised when
I stomped into his cube and scowled at
him.

TALKING ABOUT RISK
He offered a feeble defense. “There are

almost fifteen hundred different trans-
formations needed to turn the old files
into the new files. Surely you don’t expect
me to write them all down.” Yes sir, I do.
If you can code it, you can document it.
My next stop was the cube of my boss,
Chris Brown, Development Systems
Quality manager.

“Fifteen hundred, Chris. That’s what

he said. But look at this,” I held the spec
overhead and dropped it. It fluttered
through the air like a feather. “He calls
this a specification. I refuse to test this
product until he tells me what it does.”

Chris seemed unimpressed by my
demonstration. “Jim,” he said, “We need
to talk about risk.”

To my surprise, Chris didn’t see a
problem with testing an unspecified tool.
He explained it like this: “ASMCVT is a
tool that takes a text file as input and pro-
duces a new text file as output. It’s a one-
shot process. It doesn’t change the
original file in any way. Both the original
file and the new one are human readable.
Errors in the new file will be easy to
detect simply by running it through the
new assembler, which will either report
the error or produce an object file that is
not bit-for-bit equivalent to the object file
produced by the old file and the old
assembler. If we don’t provide this tool,
our customers will have to convert by
hand, whereas even a buggy tool will
potentially save them a lot of work.”

“This is not a high-risk situation,” he
continued, “and James, testing is noth-
ing more than risk management. Even a
simple testing process, based on our
assumptions about what the tool does,
could be enough to manage the risk of an
embarrassingly bad tool. Besides, you
already know a lot about the differences
between the old assembly syntax and the
new syntax. If any specific questions arise
about the functionality or risks of the
tool, sit down with the developer and ask
him nicely. But don’t expect an open-
ended brain dump.

“Just run a heap of source files through
ASMCVT,” he concluded. “Examine the
results. Report anything that seems
strange. If there’s an important problem
in there, you’ll probably find it.”

DISCIPLINE OR DELINQUENCY?
I was annoyed that my manager would

contradict a well-established doctrine of
software engineering: Software should be
implemented in accordance with a clear
specification. Although I couldn’t fault
his analysis as it applied to the situation
at hand, I worried that such situational
reasoning would provide an excuse for
resisting good software development

Reframing
Requirements

Analysis
James Bach, Reliable Software Technologies

120 Computer

So
ft

w
ar

e 
Re

al
iti

es

Software development 
is an exploratory 

and self-correcting
dialogue, complete 

with stuttering, 
hemming and hawing,

and Freudian slips.

.

James Bach
Copyright (c) 1999, IEEE Computer SocietyAuthor Contact: james@satisfice.com



processes. What I didn’t realize at that
time was that my view of the “good
processes”—and of the relationship of
people to process—was naive. I thought
of process only as a defined sequence of
tasks, whereas Chris viewed it as a way
for a team to achieve a goal. 

The idea that software processes
should be rigorously defined, repeatable
by anyone, and followed carefully is pop-
ular among senior software managers
and SQA enthusiasts. They want control
and predictability, and they think they
can get it by promoting that kind of dis-
cipline. The problem with this otherwise
reasonable point of view is that, in prac-
tice, what passes for rigor and discipline
is so often just dogmatic and thoughtless
behavior. The problem of poor process
discipline is thus replaced by process fix-
ation the obsessive pursuit of precon-
ceived tasks and goals regardless of their
value in the present context.

What distinguishes a fixation is not
that it is the wrong thing to do, but that
we do it for its own sake. We serve what
we perceive to be the needs of the
process, rather than knowing what we
need to solve a genuine problem. In the
ASMCVT case, I became fixated on the
goal of getting a specification that item-
ized each data transformation performed
by the tool, even though I didn’t actually
need that document in order to fulfill my
true mission as a test manager. I also fell
into fixating on the goal that the devel-
oper use his time to follow the official
process, regardless of what other matters
might be more important.

For his part, the ASMCVT developer
was task fixated. He did indeed write a
specification. He followed the protocol
laid down in our defined process by using
the official specification template. But
what he produced completely ignored
what I needed. We did not negotiate
effectively to resolve our conflict. This is
a case where the defined process by
which we operated did not serve us.

Unfortunately, many of the processes
we choose to standardize in our projects
and organizations are based on funda-
mentally wrong ideas about how suc-
cessful teams actually create software.
Our desire to control software projects
has seduced us into embracing unhelpful

manufacturing and engineering meta-
phors. Software development is, in fact,
dominated by human cognition, not
machinery, brute labor, or the laws of
physics. Software is a collaborative
invention. Software development is an
exploratory and self-correcting dialogue,
complete with stuttering, hemming and
hawing, and Freudian slips. Out of that
dialogue emerges a product. When soft-
ware process is forced into a manufac-
turing mold, we cripple the dialogue, or
drive it underground.

How can software development be
reframed as a goal-seeking dialogue? As
an example, let’s look at requirements
analysis and documentation.

REQUIREMENTS REVISITED
In generally accepted software devel-

opment practice, requirements analysis
is supposed to happen before design, and
design is supposed to happen before cod-
ing and testing. Some kind of document
is supposed to come out of requirements
analysis. The IEEE 830-1993 Recom-
mended Practice for Software Require-
ments Specifications includes a list of
quality attributes for requirements: cor-
rect, complete, unambiguous, consistent,
ranked for importance, verifiable, mod-
ifiable, and traceable. The specification
is supposed to guide the engineering
activities that follow.

The so-called generally accepted prac-
tice, however, isn’t generally practiced.
As I typically encounter them, require-
ments specifications are tossed salads of
ambiguous problem statements and
design decisions: They are expressed too
vaguely or too precisely, usually require
substantial background knowledge in

order to interpret, and become obsolete
or forgotten halfway through the design
phase. Does that sound familiar?

There is at least one straightforward
solution to poor requirements specifica-
tions within the framework of accepted
practice: Do more of it. Instead of com-
pressing the process into a scant few
weeks of interviews, meetings, and late-
night writing, spend months on it. Keep
at it until there is no more ambiguity or
design risk. Use testers, simulators, full-
scale prototypes, and focus groups.
Explore the full range of technological
solutions and evaluate buy-versus-build
strategies. Send the developers, incog-
nito, to the client site and have them live
among the potential users like field
anthropologists.

There’s abundant literature about the
techniques of excellent requirements
exploration and definition. Knowing
what can be done is not the main prob-
lem, though. The main problem is that
almost no one believes that any of that is
necessary. Most either think that a quick-
and-dirty requirements analysis is good
enough, or else don’t realize that their
process is quick and dirty. Another prob-
lem is that few have the skills to execute
all the analysis needed to get it all done in
one round.

A GOAL-SEEKING DIALOGUE
On the level of brass tacks, all that’s

really needed to produce a good product
is a set of ideas about what the product
should be that is understood by the devel-
opers, practical to implement, and (if
implemented) would lead to a sufficiently
desirable product. We should use what-
ever process that satisfies these needs well
enough and in good enough time. It may
even be possible to satisfy these needs
without writing any kind of requirements
document or having any defined require-
ments analysis phase. Whatever the value
of documents and phases, they are only
a means to an end, and staying clear
about means and ends is a powerful
defense against fixation.

In the words of requirements expert
Brian Lawrence, “Many people focus on
requirements as existing in a require-
ments specification. Requirements are
the drivers of design choices—the rea-

February 1999 121

Unfortunately, many of 
the processes we choose

to standardize in our
projects and

organizations are based
on fundamentally wrong

ideas about how 
successful teams 

actually create software.

.



122 Computer

The goals are, in order of precedence:

1. Produce a good product.
2. Ensure that requirements are under-

stood well enough—and are suffi-
ciently practical and desirable—so
that design risks that threaten the
first goal are acceptably small.

3. Create a requirements documenta-
tion, as necessary, to support the first
two goals.

Immediate practical implications flow
from this model:

• A requirements specification is a tool
to facilitate requirements manage-
ment. Even if it’s incomplete or
ambiguous, it can still provide use-
ful clues that promote a deep, shared
understanding about requirements.

• Inasmuch as the requirements docu-
ment is incomplete, it should not be

sons why we decide to build what we
build. Those reasons exist inside our
minds. So the full set of requirements
exists in the shared mind space among 
all the product stakeholders.” A require-
ments document is only a model of the
information in that mind space, but it
helps us manage the risk of misunder-
stood, impractical, and undesirable
requirements.

Figure 1 is a depiction of requirements
evolution as a dialogue, rather than as a
monolithic phase. Any requirements
process, from rigorous clean-room devel-
opment to pure hacking, could be
described in terms of this model, which
describes two dialogues that proceed
simultaneously: defining and manifesting.
The defining dialogue refines understand-
ing of what is desired, while the manifest-
ing dialogue refines understanding of
what can reasonably be achieved. The
entire dialogue is a goal-directed activity.

used as the sole basis for future
work. It should be augmented by
other channels of information, such
as oral communication, domain
expertise, and prototypes.

• Requirements specifications are no
substitute for requirements discus-
sion and negotiation.

• The requirements phase of develop-
ment is never where all the require-
ments definition happens, but rather
where enough happens to gain com-
mitment and proceed without incur-
ring an unacceptable risk of a buggy
product and massive rework.

• Requirements negotiation continues
as technological limitations are
encountered and explored. Require-
ments priorities may change in the
face of the difficulties and costs of
realizing them in a product.

When we fixate on an elaborate require-
ments process, we try to persuade the pow-
ers that be to let us perform that process,
and bemoan our lot when they don’t sup-
port us. When we fixate on a quick
process, we try to get it over with, doing
the minimum needed to satisfy the process
fanatics. There is a third way, however. We
can reject process fixation and solve prob-
lems instead. We can reframe the require-
ments process as a goal-seeking dialogue
whose purpose is to manage the risk of
building the wrong product.

I n the ASMCVT situation, the dialogue
was very simple. Chris reasoned about
requirements and came to the conclu-

sion that we did not need an elaborate
specification detailing the external design
of this particular tool in order to satisfy
our testing mission. History proved him
correct, as far as I can tell. We shipped the
tool without incident. But his demonstra-
tion had effects far beyond saving labor
on a minor test project. He got me started
on a ten-year odyssey, investigating meth-
ods of risk analysis and management, and
learning to be reasonable. ❖

Acknowledgments
Thanks to Brian Lawrence (http://www.

coyotevalley.com) for helping me under-
stand the requirements for this article.

Software Realities

Figure 1. Requirements evolution. The cloud labeled “requirements” represents the require-
ments as understood. The block labeled “specification” represents the requirements as docu-
mented. The cloud labeled “design risks” represents the problems that may occur due to poor
requirements. There are two dialogues that proceed simultaneously: defining and manifesting.
The defining dialogue, on the left, is the cycle that refines understanding of what is desired.
The manifesting dialogue, on the right, refines understanding of what can be reasonably
achieved.

Requirements tasks

• Elicit • Communicate
• Negotiate • Control
• Validate • Explore

ProductSpecification

Design
risks

• Desirable
• Practical
• Understood

Requirements

.




