
James, he rolled his eyes and asked me,
“Why 36? What is the significance of
36?”

I explained that when I realized we
could not have a successful beta with the
current software stability, I wanted the
team to realize just how many defects we
were dealing with. A real number of
defects would do this because this team
didn’t think in terms of other defects, just
the one they were working on.

The team had an interesting view of
defects. At any given time, the developers
operated on the assumption that the
problem they were working on was the
last one in the product. In hindsight, this
seems a bit silly. But imagine you’re in
this situation. For the past five years,
you’ve been stuck between two states:
thinking that you’re close to shipping and
realizing that what you’ve just completed
is not successful. Your senior manage-
ment wants a release last quarter. Your
customers want you to get to beta. Not
all the developers understand the entire
product and you’re all exhausted. The
testers don’t completely understand how
to test the product and they’re tired, too.

What would you do? You very well
might cling to the belief that each defect
is an exception to the rule that your prod-
uct is ready to go. You would keep your
head down, work like crazy, and hope
that this defect is the last one.

I wanted to burst this misconception.
Rather than hope we were on the last
problem, I wanted to create a buffer of
problems and give the project permission
to ship with some known and acknowl-
edged problems. If we could agree on
nonzero defect criteria, the team could
get out of the rut they were in. They
could stop thinking that they had created
perfection and stop being disappointed
when they did not achieve it. We would
then be able to move the project to beta
and ultimately to release. 

ARRIVING AT THE MAGIC NUMBER
In truth, my original suggestion was

that all known bugs be entered into the
bug tracking system and that there be
fewer than 40 open high-priority bugs.
When I made this suggestion, I was called
into the division manager’s office. We had
a fascinating conversation:

December 1998 127

So
ft

w
ar

e 
Re

al
iti

es

J
ames Bach and I have had an
ongoing, multiyear discussion
about my definition of release
criteria. He thinks I sometimes
come up with crazy measure-

ments based on no apparent foundation.
He’s right. I do. I use release criteria to
decide when a project has a “shippable”
product. I do this so that the decision to
ship is a thoughtful team decision based
on data and not dominated by the gut
feeling of the most powerful person.

Sometimes a ship decision is made
when people are very tired and stressed.
Sometimes the ship decision is based on
a corporate need for revenue. I prefer to
reduce the stress of making the ship deci-
sion by addressing—before the last
minute—some of the issues that cause
stress. Quantitative release criteria are
one way to do that, and I do use them.
It’s just that these release criteria can look
arbitrary, even crazy, to anyone not
familiar with the details of a particular
project.

THE VALUE OF A MAGIC NUMBER
I recently worked as a project manager

for a small middleware applications
group. The group consisted of six devel-
opers, three testers, and a part-time
writer. When I arrived, the group was in

the midst of preparing for a beta ship-
ment. After a short assessment, I realized
the software would not be stable enough
for beta at the time the group wanted to
ship. The lack of stability was due to too
many defects in the current release and
too much time fixing defects from the
previous release.

But the team was not tracking defects.
So I developed defect-oriented beta and
release criteria. The beta criteria required
that all known bugs be entered into the
bug tracking system and that there be
fewer than 36 open high-priority bugs.
The release criteria, then, were that there
be no high-priority bugs open. There
were other criteria, but these were the
defect-oriented ones.

When I described the situation to

Of Crazy 
Numbers and

Release Criteria
Johanna Rothman, Rothman Consulting Group

You very well might cling
to the belief that each
defect is an exception 
to the rule that your

product is ready to go.

.

James Bach
Copyright (c) 1998, IEEE Computer Society



128 Computer

Software Realities

DM: “Johanna, you’ve offended the
entire project team. What kind of a pro-
ject manager are you? Why do you think
there are so many high-priority bugs in
the system? I don’t think we have even
80 bugs total and I bet only a handful are
high priority.”

JR: “Well, based on our testing, I think
we have over 100 bugs and most of them
are high priority. I think when we fix a
bunch of high-priority bugs we’ll find
more low-priority bugs.”

DM: “No way. I bet we have fewer
than 70 bugs total. Maybe only six high
priority.”

JR: “Well, we have a 40 percent fault-
feedback ratio and the testers are finding
more than five bugs a day now. We can’t
fix them faster than we can find them. I
think 100 is an extremely optimistic esti-
mate.” A 40 percent fault-feedback ratio
means that for every ten bugs fixed, four
new bugs are created. (See G.M.
Weinberg’s Quality Software Manage-
ment, Vol. 2, Dorset House, 1993.)

DM: “No. You’re wrong. We can’t

have more than 60 bugs. If we do, I owe
you a coffee.”

You can see that if I’d let this conver-
sation continue this way, the division
manager might have denied that they had
any bugs at all. This was a smart senior
manager who just didn’t understand soft-
ware projects. He didn’t understand that
defects cluster and that sometimes if you
fix something, 10 new ones pop up
because you’ve now gotten to that code
path. I decided to redirect the conversa-
tion.

JR: “OK. Let’s come to an agreement
here. For the sake of argument, let’s say
you think there might be 70 open bugs.
Let’s say I’m hopelessly pessimistic and
half of them are high priority. Let’s take
35 as the high-priority bug count, add
one to give us some leeway, and call the
beta criterion ‘No more than 36 high-
priority bugs.’ OK?”

BEARING WITH DEFECTS
The division manager agreed as long

as I paid up in coffees for every high pri-
ority bug fewer than 36. We started using
the bug-tracking system. At the end of
the first week, we had more than 100
bugs open in the tracking system, more
than 70 of which were high priority. It
was a struggle to reduce that amount to
36 for beta, but we did. And we were
honest with ourselves. 

It wasn’t just that I wanted the project
team to be aware of defects, I wanted
them to be comfortable with acknowl-
edging defects. They had to realize that
they had produced defects and that they
would not necessarily be able to fix all of
them for a given release. That, in turn,
makes awareness of defects less over-
whelming. It makes the defects bearable.

This project’s customers were ecstatic
about the beta. They’d never had a release
this good from this organization. When
we shipped them the final version, they
called to congratulate the project team. 

I’m not claiming that fewer than 36
defects is good quality and 37 defects
would be unacceptable quality. I used this
defect metric as a way to help the team
make a first step in becoming aware of
quality. If someone on the team said, “I

don’t think 36 is the right number,” then
we would have a conversation about what
quality really means for this product.

In this case, the beta and release crite-
ria helped the organization look at what
they were doing. In addition, each crite-
rion gave the organization common goals
and a common language—and it gave
them permission to be good without hav-
ing to be perfect.

I n this case, the defect counts were an
aggregate team measure. The team
could only succeed if everyone worked

together as a team. I pushed the team to
a specific goal that then allowed me to
help them improve their product devel-
opment process (use a bug tracking sys-
tem, plan their work, use a configuration
management system, and so on).

By the end of the project, the team
realized 36 was just a nonzero number,
a number that did not demand perfec-
tion. The number was valuable because
it got people thinking about the data—
where it comes from and what it’s used
for. The goal gave the team an incentive
to use a process that would help them
succeed. The team figured out how to get
the work done.

I don’t care within the context of the
project if the release criteria look crazy,
especially to people outside the project.
As a consulting project manager, I need
to make sure the people understand the
reasoning behind the numbers by the
time the project is over. In this case, the
numbers helped people realize they
needed to track and quantify some pro-
ject data. Once they could track the data,
they could choose what to do about it.

I don’t care if the numbers have no
relationship to what normal people with
normal guts might think. I only care that
release criteria help the project team ship
the right product on time with defects the
customers won’t scream about. And that
they do it without ulcers and exhaustion,
and without driving each other crazy. ❖

Johanna Rothman is president of Roth-
man Consulting Group, a company that
provides management consulting and
training for product development organi-
zations. Contact her at jr@jrothman.com.

New Tools is
now online at 
http://www.
computer.org/
computer/tools
The online site
offers
regularly
updated 
coverage of
development
tools in the 
magazine
version’s five
categories.N

o
w
O
n
l
i
n
e
!

.




