
June 1998 107

So
ft

w
ar

e 
Re

al
iti

es

W
ashington, D.C., seems
like an odd place (to the
two of us Californians,
anyway). Practically every
building downtown looks

like an ancient monument. From the
sidewalk outside the US Supreme Court,
the city seems like it was built not by
humans but by some alien race. The
tourists, workers, and even dignitaries
who scuttle up and down the granite
steps just don’t fit the scenery.

We feel the same way about most of the
software project plans, schedules, and
process descriptions that we read. They
seem more like image advertising than
technical information. They don’t fit the
behavior of the people doing the project
and they don’t describe reality. And it isn’t
just the documents. Consider this dialogue
James recently had with a project lead:

James: “When will you be feature-
complete?”

Project lead: “We’re shooting for
Friday.”

James: “Well, I know that’s been the
plan, but I just read in your e-mail that
the project is a week behind schedule.”

Project lead: “That’s true. Yes.”
James: “So when you say that you’re

‘shooting for Friday,’ you actually mean
that, although you have no confidence
that you will deliver on Friday, you hope
that the test team will forgive you and
appreciate how much you wanted to
deliver it then. You also hope that we
appreciate how hard you are working to
keep the schedule from slipping out any

farther than the Friday after next. Does
that sound right?” 

Project lead: “Uh, yes.”

This statement—shooting for Friday—
sounded like a statement of fact or a con-
firmation of commitment, but turned out
to be something almost the opposite. We
can think of many similar examples: a list
of “should have” features turns out to be
“won’t haves”; a test plan states “test all
possible combinations of X and Y ...”
even though the tester knows that there
will not be enough time to examine more
than a tiny fraction of those combina-
tions; another tester writes 400 test cases,
puts each one under source control, then
only executes a hundred of them because
“the rest aren’t worth running”; a project
plan states that it is critical to have mea-
surable goals for the project, then offers
a set of vague goals with no mention of
how to measure them.

Why don’t we just speak plainly, then
do what we say we’ll do? Why can’t we

just follow our plans? These are old ques-
tions, of course, but we’re tired of the pat
answers that usually follow.

Sure, sure, some managers are shallow
and uneducated. Some developers are
untamed cowboy technocrats. Some peo-
ple don’t care. Enough already. Since lit-
tle of that applies to the kind of people
who make the effort to read Computer,
we’re really interested in a different ques-
tion: Why are smart, skilled, responsible,
experienced software people like us so
often mixed up about commitments?

Jerry Weinberg devotes much of his
book, Quality Software Management,
Vol. 3, Congruent Action (Dorset House,
1994), and his workshops (http://www.
geraldmweinberg.com) to examining this
question. Other authors seem content to
ignore the issue. Let’s do our part to
reverse the trend.

A PUZZLING EXAMPLE
Let’s dissect a real example of a con-

versation about commitment, caught on
video. At Weinberg’s Software Engineer-
ing Management workshop, we took
part in a brief project simulation that
involved a new employee, Bill, joining a
team. It starts with the project manager
leading Bill to a table. On the table are
several jigsaw puzzles. Three other peo-
ple sit at the table piecing them together.
This dialogue is transcribed, verbatim,
from the tape:

Manager: “As we agreed in your inter-
view, you’re going to be my border man.
You’re going to put the borders
together.” [gestures at the puzzle table]

Bill: “Okay, what kind of schedule are
we under for borders?”

Manager: “I expect you to do it as fast
as you possibly can. I’ll come back and
check on your progress.” [turns to walk
away]

Bill: “Okay. But what’s your expecta-
tion of finish time?”

Manager: “I expect you to be done in
about ten minutes.”

Bill: “Okay, let me get started on this
and see if this is like other borders I’ve
done. Borders do vary across—”

Manager: “Sure they do.”
Bill: “We’ll see if we need to adjust—”
Manager: “Okay, great.” [turns and

leaves]

Plans, Lies, 
and Videotape

James Bach and Dave W. Smith, SmartPatents

So
ft

w
ar

e 
Re

al
iti

es

Why are smart, skilled,
responsible,

experienced software
people like us so often

mixed up about
commitments?

.

James Bach
Copyright (c) 1998, IEEE Computer Society

Author Contacts: james@satisfice.com, dws@best.com



108 Computer

Software Realities

Bill sits down at the table in front of a
small pile of puzzle pieces. Twelve min-
utes later the simulation ends. Though
the three other folks at the table had each
put parts of the puzzles together, Bill had
not. In fact, throughout the exercise, he
hadn’t once taken a close look at any of
the pieces on the table. Instead, Bill spent
his time talking to the other puzzle
solvers and attempting to talk to the pro-
ject manager.

Certainly, from the point of view of the
project manager, Bill did not even begin
the task he agreed to do. The fellow play-
ing the manager had little trouble feign-
ing indignation at his new employee’s
lack of visible progress.

PIECING IT TOGETHER
During the simulation debriefing,

observer comments about Bill’s behavior
ranged from “he was avoiding the thing
he was told to do” to “he looked bewil-
dered” to “I was surprised by the line of
logic he was pursuing.” Most of us
expected Bill to put puzzle pieces
together. We were a bit surprised when
Bill revealed that he had committed, in
his own mind, to a larger goal: helping
the team solve the puzzles.

This larger goal, although not stated
explicitly in the simulation, struck Bill as
more professional and responsible than
his explicit and narrowly focused
assignment. This innocent difference in
the focus of the commitment caused him
to behave in ways that were unexpected
in the eyes of those who focused only on
puzzle pieces.

In light of Bill’s actual commitment, his
actions during the simulation—seeking
team members’ role definitions and look-
ing for how his role would interact with
them—are understandable. Bill quickly

perceived a problem in the process being
used to solve the puzzles. He noticed that
the other team members had apparently
laid claim to sections of the puzzle,
including borders. Bill attempted to
negotiate with them to get those pieces,
but was rebuffed. Then he attempted to
escalate his concerns to his manager.

The manager wanted none of it, say-
ing “I’m not really ready to talk about
that yet. I expect you to work it out with
the team,” and seemed concerned instead
about a small pile of disconnected border
pieces in the middle of the table. From
Bill’s point of view, the manager reneged
on an agreement (implied by “Okay,
great.”) to allow the task and schedule to
be revisited. Thus, the behaviors of both
actors in this drama were completely con-
sistent, given their individual views of
reality. And yet there was conflict.

You might be tempted to dismiss Bill’s
redefinition of the task as an irresponsi-
ble act. We don’t think so. It may be
reckless to form private interpretations
of tasks in a well-defined and supervised
environment like a fast-food restaurant
or an assembly line, but software pro-
jects are almost never that definitive (or
that closely supervised). Individuals are
required to use their judgment and ini-
tiative (or heroism, as James likes to 
call it).

It’s also important to realize that this
particular simulation, unbeknownst to
Bill, was designed as a trap. Had Bill
done exactly as he was told, he would
have been thwarted by the very process
problems that he identified. In one sense,
he beat the simulation by delaying the
assigned task while he sought to under-
stand and correct the team’s process.

WHY COMMITMENTS GO WRONG
On the plane ride back from the sem-

inar, we were inspired to make a list of
reasons for why otherwise capable, well-
intentioned people appear not to meet
their commitments. Many of the reasons
we listed relate directly to the puzzle pro-
ject simulation.

No commitment in the first place
What signals tell you someone has

agreed to do something? In most cases,
they are pretty ambiguous: a nod, a
word, or the absence of an objection.

Probably not a written contract, and
even then, legal phrasing is itself subject
to interpretation. That’s why we must
periodically refresh and reconfirm
important commitments.

Conditional commitments, 
with conditions unmet

Look closely at Bill’s words. He never
actually said that he would put any
pieces together. What he indicated agree-
ment about, at least implicitly, was to
analyze the border problem and perhaps
to suggest adjustments. During the
debriefing, he clarified “adjustments” to
mean “adjustments to the schedule.”
You can spot the condition hiding in
Bill’s agreement. He implies that if this
puzzle border problem isn’t like others
he’s done, then he may not be able to ful-
fill the task within the allotted time.

Commitment to work toward 
a goal, rather than achieve it

Conditions are so changeable and
goals are so volatile in software devel-
opment that it becomes a survival skill
to commit oneself by degrees, rather
than all at once. Total and instant com-
mitment saps a lot of energy, and wreaks
havoc with prior commitments. One
way to do this is to commit to a level of
effort, rather than a result. 

The “shooting for Friday” line seems
like an example of this, since the devel-
opers were working toward the goal
even though they knew they would not
achieve it. Also, Bill’s repeated use of the
ambiguous word “okay” turned out to
be an indicator of a commitment to work
toward the puzzle solutions, rather than
specifically to put pieces together. This
kind of ambiguity leads to very unpleas-
ant surprises during the release cycle.

Different impressions of 
the true commitment

Bill, his manager, and many observers
had a different impression of the com-
mitment. It helped to have the videotape
to review the exact words, but even then
the actual words were open to diverse
interpretations.

Commitments made under duress
Often we find ourselves in situations

where we cannot yet commit, but overtly

Eliminating ambiguity
through the use of rigorous
specifications and methods
is a tactic directly at odds
with the short cycle times

required for modern,
market-driven software

development.

.



June 1998 109

refusing to commit causes a lot of com-
motion. It takes substantial courage and
energy to raise your hand and stop every-
thing. Bill may have felt that he didn’t
have the option of saying “No. I can’t
agree to this assignment until we figure
out how to work together.”

Commitments made in error
We may commit without enough

information about the implications of
that commitment. A common manifes-
tation of this is committing to a task
without adequate consideration of the
total load of all the other tasks to which
we’ve already committed. We may be
able to do anything—that is, any one
thing—but we can’t do everything at
once.

Commitments not worth 
the effort to fulfill

Sometimes it’s better to quit. Unfor-
tunately, there may be no protocol for
withdrawing from a commitment, and
therefore no graceful way to do it.

Terms of commitment 
changed midstream

We expect technical people to use their
common sense and their best profes-
sional judgment. Sometimes this expec-
tation results in the appearance of
shifting commitment as people reinter-
pret their commitments in light of past
experience, risks, related tasks, and new
information.

Reinterpretation is a good thing! We
should be glad that humans, unlike com-
puters, have DWIM (do what I mean)
capability. Still, DWIM is a difficult art,
requiring continuous adjustment as con-
ditions change. To succeed, a high-per-
formance team needs a shared protocol
for recommitment. In the simulation, Bill
and his manager did not develop such a
protocol.

I n his article “Unresolved Ambiguity,
The Silent Source of Risk in Your
Project” (American Programmer, Apr.

1996), Brian Lawrence argues that ambi-
guity is the root of most important prob-
lems in software projects. He suggests
some straightforward approaches to
resolving ambiguity. We agree, but reduc-

ing ambiguity can take a lot of time, skill,
and effort.

Eliminating ambiguity through the use
of rigorous specifications and methods is
a tactic directly at odds with the short
cycle times required for modern, market-
driven software development. That sort
of rigor also requires a level of excellence
in teamwork and technical mastery that
few development groups attain, although
many shoot for it.

The puzzle project simulation we par-
ticipated in was designed to be a no-win
situation. Poor Bill never had a chance.
Many real-life projects are similarly
fraught with conflict. But the only real
failure in these situations is the failure to
learn. Bill and his manager have work to
do to clarify their commitment protocol.
We are striving to do the same at
SmartPatents. Meanwhile, our VP of
Engineering, Luke Hohmann, reminds us
that intentional commitment to a seem-
ingly impossible goal (like putting a man
on the moon) is sometimes a way 
to achieve dramatic breakthroughs in
performance.

Looks like we have our work cut out
for us. But that’s a subject for another
article. We promise. Really. ❖

Acknowledgments
We thank Brian Lawrence, Johanna

Rothman, Luke Hohmann, and the facil-
itators and participants of Jerry Wein-
berg’s Software Engineering Management
’98 group.

Dave W. Smith is a senior developer at
SmartPatents. Smith has led projects at
a number of Silicon Valley startups and
has participated on both sides of many
ambiguous commitments. Contact him
at dws@best.com; http://www.best.com/
~dws.

The puzzle project 
simulation we 

participated in was
designed to be a no-win 

situation. Poor Bill 
never had a chance. 

ture—including the database schema,
mapping to the object layer, application
functions, client-server communication
functions, and Web-based user interface.

Data migration
Migrating legacy data is one of the

most difficult tasks in replacing a legacy
system. This difficulty stems from the
nature of the legacy data and the highly
constrained RDBMS design. The Domain
IDL and metadata approach made it easy
to tackle the most difficult issues: data val-
idation and correction. To accomplish
these tasks, we used the Domain Object
Definition Language (ODL).

As shown in Figure 3, our process fil-
ters legacy data and reformats it into ODL
files that conform to the metadata
extracted from IDL. Next, Informix High-
Performance Loader (HPL) files were gen-
erated from the ODL files and loaded into
the database. With this approach, we suc-
cessfully migrated 10 million objects (75
million database records) in three months,
during live operation. This minimized the
manual effort in validating and cleaning
the legacy data.

D omain successfully replaced the
largest GTE legacy system, one that
has been in operation for decades,

in less than 18 months. This accom-
plishment required more than just state-
of-the-art technology: It required a syn-
ergistic approach that brought together
hardware, software, and people. This
approach combined advanced software
techniques with practical solutions to
achieve a common goal shared by users,
developers, and managers.

Now, with a state-of-the-art infra-
structure, GTE can easily and quickly
expand Domain to meet shifting opera-
tional needs and the new business chal-
lenges facing telephone service providers
today. ❖

Scott Bollig is the manager of the Inter-
national and Complex Systems Depart-
ment at GTE Laboratories in Waltham,
Mass.; contact him at sbollig@gte.com.

Dan Xiao is the Domain program man-
ager at GTE Laboratories; contact him
at ds24@gte.com.

Integrated Engineering
Continued from page 106

.




